1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
//! Traits, helpers, and type definitions for the collection framework.
//!
//! This module contains various tools for interacting with the collections. In summary:
//!
//! - [`Iterators`] is a trait that encapsulates all possible methods for iterating over a
//! [`Collection`].
//! - [`Collection`] is the base trait all collections must implement. Defines a series of methods
//! commonly used by almost all collections.
//! - [`FixedSizeCollection`] is a trait that extends [`Collection`] and adds the ability to define
//! collections with a fixed capacity and the possibility of expanding them. It is mainly intended
//! for collections based on arrays.
//! - [`ExpansionMode`] is a type that defines the behavior of a collection when it is full.
//! - [`check_expansion`] is a function that checks if the collection is full and if it is, expands
//! it depending on the [`ExpansionMode`]. Instead of using this function directly, the
//! [`check_expansion_add`] macro is available to wrap the behavior of a function.
//!
//! For more details, see the respective documentation of each item in the lists.
//!
//! [`check_expansion_add`]: trait_based_collection_macros::check_expansion_add
#![warn(missing_docs)]
use std::ops::{Deref, DerefMut};
pub use trait_based_collection_macros::check_expansion_add;

/// Trait that allows to implement all possible iterators over a [`Collection`]. All collections
/// must implement all iterators, allowing for default implementations across collections.
///
/// There are three different types of iterators:
///
/// - [`iter`] returns an immutable iterator over [`ItemRef`] in the [`Collection`] without
/// consuming them.
/// - [`iter_mut`] returns a mutable iterator over the [`ItemMut`] in the [`Collection`] without
/// consuming them.
/// - [`into_iter`] returns an iterator over the items in the [`Collection`] and consumes the
/// collection .
///
/// # Safety
///
/// All iterators must return the items in the same order as the other iterators. This is
/// required to ensure that the iterators are consistent with each other. This is not checked
/// by the compiler. If this is not upheld, the behavior of the [`Collection`] is undefined.
///
/// [`iter`]: Iterators::iter
/// [`ItemRef`]: Iterators::ItemRef
/// [`iter_mut`]: Iterators::iter_mut
/// [`ItemMut`]: Iterators::ItemMut
/// [`into_iter`]: IntoIterator::into_iter
pub trait Iterators<'a, T>: IntoIterator<Item = T> {
    /// The type of reference the immutable iterator ([`Iter`]) iterates over the items in the
    /// [`Collection`]. The reference is only valid for the duration of the iteration.
    ///
    /// [`Iter`]: Iterators::Iter
    type ItemRef: 'a + Deref<Target = T>;

    /// The type of mutable reference the mutable iterator ([`IterMut`]) iterates over the items in
    /// the [`Collection`]. The reference is only valid for the duration of the iteration.
    ///
    /// [`IterMut`]: Iterators::IterMut
    type ItemMut: 'a + DerefMut<Target = T>;

    /// Which kind of iterator is returned by [`iter`].
    ///
    /// [`iter`]: Iterators::iter
    type Iter: Iterator<Item = Self::ItemRef>;
    /// Which kind of iterator is returned by [`iter_mut`].
    ///
    /// [`iter_mut`]: Iterators::iter_mut
    type IterMut: Iterator<Item = Self::ItemMut>;

    /// Creates an immutable iterator over the items in the [`Collection`] without consuming them.
    ///
    /// If you want to be able to modify the collection , you should use the [`iter_mut`] method.
    /// If you want to consume the collection , you should use the [`into_iter`] method that is
    /// implemented deriving the [`IntoIterator`](trait_based_collection_macros::IntoIterator) trait.
    ///
    /// Also, it is recommended to implement the [`IntoIterator`] trait but through reference, like
    /// this example based on the one at collection :
    ///
    /// # Examples
    ///
    /// Example using the [`ArrayStack`]:
    ///
    /// ```
    /// use trait_based_collection::{ArrayStack, prelude::*};
    ///
    /// let mut collection = ArrayStack::with_capacity(10);
    /// for i in 0..10 {
    ///     collection.add(i);
    /// }
    /// for item in collection.iter() {
    ///     println!("{}", item);
    /// }
    /// ```
    ///
    /// Example if the `IntoIterator` is implemented through reference:
    ///
    /// ```
    /// use trait_based_collection::{ArrayStack, prelude::*};
    ///
    /// let mut collection = ArrayStack::with_capacity(10);
    /// for i in 0..10 {
    ///     collection.add(i);
    /// }
    /// for item in &collection {
    ///     println!("{}", item);
    /// }
    /// ```
    ///
    /// [`iter_mut`]: Iterators::iter_mut
    /// [`into_iter`]: IntoIterator::into_iter
    /// [`ArrayStack`]: crate::stack::ArrayStack
    fn iter(&'a self) -> Self::Iter;

    /// Creates a mutable iterator over the items in the [`Collection`] without consuming them.
    ///
    /// If you don't want to be able to modify the collection , you should use the [`iter`] method.
    /// If you want to consume the collection , you should use the [`into_iter`] method that is
    /// implemented deriving the [`IntoIterator`](trait_based_collection_macros::IntoIterator) trait.
    ///
    /// Also, it is recommended to implement the [`IntoIterator`] trait but through reference, like
    /// this example based on the one at collection :
    ///
    /// # Examples
    ///
    /// Example using the [`ArrayStack`]:
    ///
    /// ```
    /// use trait_based_collection::{ArrayStack, prelude::*};
    ///
    /// let mut collection = ArrayStack::with_capacity(10);
    /// for i in 0..10 {
    ///     collection.add(i);
    /// }
    /// for item in collection.iter_mut() {
    ///     println!("{}", item);
    /// }
    /// ```
    ///
    /// Example if the `IntoIterator` is implemented through reference:
    ///
    /// ```
    /// use trait_based_collection::{ArrayStack, prelude::*};
    ///
    /// let mut collection = ArrayStack::with_capacity(10);
    /// for i in 0..10 {
    ///     collection.add(i);
    /// }
    /// for item in &collection {
    ///     println!("{}", item);
    /// }
    /// ```
    ///
    /// [`iter`]: Iterators::iter
    /// [`into_iter`]: IntoIterator::into_iter
    /// [`ArrayStack`]: crate::stack::ArrayStack
    fn iter_mut(&'a mut self) -> Self::IterMut;
}

/// This is the trait that all implementations of a collection must implement. A [`Collection`] is a
/// data structure that can be used to store a collection of items.
///
/// The [`Collection`] is generic over any type without the need of any extra traits. This allows
/// the user to create a collection of any type that they want.
///
/// The trait provides a number of methods that can be used to create, manipulate, and retrieve
/// items from the [`Collection`]. The methods are divided into three groups:
///
/// - **Creation:** These methods are used to create a new [`Collection`] and add items to it.
/// There are the following methods:
///     - [`new_default`]: Creates a new [`Collection`] with a default capacity. Normally, this
///     means that the collection will be expandable.
///     - [`with_capacity`]: Creates a new [`Collection`] with a specific capacity. This method is
///     useful if you want to avoid the expense of resizing the collection when adding items.
///     - [`with_approximate_capacity`]: Creates a new [`Collection`] with a capacity that is close
///     to the specified capacity but could be larger. This method is useful if you want to avoid
///     some of the expense of resizing the collection when adding items.
///
/// For more information about capacity, see the trait [`FixedSizeCollection`] which is used to
/// create collections with a fixed capacity (i.e. the collection will not be easily expandable).
///
/// - **Manipulation:** These methods are used to add, remove, and retrieve items from the
/// [`Collection`]. There are the following methods:
///     - [`add`]: Adds an item to the [`Collection`].
///     - [`remove`]: Removes an item from the [`Collection`] and returns the ownership of the item.
///     - [`clear`]: Removes all items from the [`Collection`].
///
/// - **Retrieval:** These methods are used to retrieve items or information from the
/// [`Collection`]. There are the following methods:
///     - [`peek`]: Returns a [`ItemRef`] to the an item in the [`Collection`]. The item should be
///     the same as the one returned by [`remove`].
///     - [`peek_mut`]: Returns a [`ItemMut`] to the an item in the [`Collection`]. The item should
///     be the same as the one returned by [`remove`].
///     - [`get`]: Returns a [`ItemRef`] to the an item at the specified index in the
///     [`Collection`].
///     - [`get_mut`]: Returns a [`ItemMut`] to the an item at the specified index in the
///     [`Collection`].
///     - [`find`]: Returns an index to the an item in the [`Collection`] that matches the
///     specified item.
///     - [`contains`]: Returns true if the [`Collection`] contains the specified item.
///     - [`len`]: Returns the number of items in the [`Collection`].
///     - [`is_empty`]: Returns `true` if the [`Collection`] is empty.
///
/// As briefly mentioned above, the [`Collection`] is intended for all types of data structures.
/// However, if the the amount of items in the collection is known, it is possible to create a
/// [`FixedSizeCollection`] which can be used to create a collection with a fixed capacity. This is
/// mainly for implementation of data structures using arrays.
///
/// # Examples
///
/// A simple example of creating a [`Collection`] by using a wrapper around the [`Vec`] data
/// structure with the minimum amount of code (by using the default implementation of the
/// different methods):
///
/// ```
/// use trait_based_collection::{prelude::*, macros::All};
///
/// #[derive(All)]
/// struct MyCollection<T> {
///     data: Vec<T>,
/// }
///
/// impl<'a, T: 'a> Iterators<'a, T> for MyCollection<T> {
///     type ItemRef = &'a T;
///     type ItemMut = &'a mut T;
///
///     type Iter = std::slice::Iter<'a, T>;
///     type IterMut = std::slice::IterMut<'a, T>;
///
///     fn iter(&'a self) -> Self::Iter {
///         self.data.iter()
///     }
///
///     fn iter_mut(&'a mut self) -> Self::IterMut {
///         self.data.iter_mut()
///     }
/// }
///
/// impl<'a, T: 'a> Collection<'a, T> for MyCollection<T> {
///     fn new_default() -> Self where Self: Sized {
///         MyCollection {
///            data: Vec::new(),
///         }
///     }
///
///     fn add(&mut self, value: T) {
///         self.data.push(value);
///     }
///
///     fn remove(&mut self) -> Option<T> {
///         self.data.pop()
///     }
///
///     fn len(&self) -> usize {
///         self.data.len()
///     }
/// }
/// ```
///
///
/// # Derivable Traits
///
/// The [`Collection`] trait allows the easy implementation of several traits that can be derived
/// through the `derive` macro. These traits can be generically implemented by using the methods
/// in the [`Collection`] trait. Currently, the following traits are derivable:
///
/// - [`FromIterator`]: Creates a new [`Collection`] from an iterator.
/// - [`IntoIterator`]: Creates an iterator from a [`Collection`].
/// - [`Default`]: Creates a new [`Collection`] with a default capacity. Uses the [`new_default`]
/// method.
/// - [`Extend`]: Extends a [`Collection`] with items from an iterator. Uses the [`add`] method.
/// - [`Display`]: Converts a [`Collection`] to a string. Uses the [`iter`] method.
/// - [`NewMacro`]: Adds a macro for easy creation of a new [`Collection`] with the same syntax as
/// the array creation syntax.
/// - [`Drop`]: Drops the [`Collection`] while avoiding memory leaks.
/// - [`Index`]: Allows indexing into a [`Collection`]. However, this this trait could be
/// incompatible with the [`get`] and [`get_mut`] methods.
///
/// Special mention to the [`All`] derive macro, which can be used to derive all traits at once.
///
/// For more information about the derivable traits, see the [`Collection Macros`] module.
///
/// # Safety
///
/// The implementation of the [`Collection`] trait could be unsafe as some of the methods in the
/// trait need the use of unsafe code. However, the different implementations of the [`Collection`]
/// should ensure that the behavior is safe.
///
/// [`new_default`]: Collection::new_default
/// [`with_capacity`]: Collection::with_capacity
/// [`with_approximate_capacity`]: Collection::with_approximate_capacity
/// [`add`]: Collection::add
/// [`remove`]: Collection::remove
/// [`clear`]: Collection::clear
/// [`peek`]: Collection::peek
/// [`peek_mut`]: Collection::peek_mut
/// [`get`]: Collection::get
/// [`get_mut`]: Collection::get_mut
/// [`find`]: Collection::find
/// [`contains`]: Collection::contains
/// [`len`]: Collection::len
/// [`is_empty`]: Collection::is_empty
/// [`ItemRef`]: Iterators::ItemRef
/// [`ItemMut`]: Iterators::ItemMut
/// [`iter`]: Iterators::iter
///
/// [`Collection Macros`]: crate::macros
/// [`FromIterator`]: trait_based_collection_macros::FromIterator
/// [`IntoIterator`]: trait_based_collection_macros::IntoIterator
/// [`Default`]: trait_based_collection_macros::Default
/// [`Extend`]: trait_based_collection_macros::Extend
/// [`Display`]: trait_based_collection_macros::Display
/// [`NewMacro`]: trait_based_collection_macros::NewMacro
/// [`Drop`]: trait_based_collection_macros::Drop
/// [`Index`]: trait_based_collection_macros::Index
/// [`All`]: trait_based_collection_macros::All
pub trait Collection<'a, T>: Iterators<'a, T> {
    /// Creates a new [`Collection`] with a default capacity.
    ///
    /// Generally, this means that the collection will be expandable. This method is useful if you
    /// don't know the amount of items that will be added to the collection . The default capacity
    /// will depend on the implementation of the collection .
    ///
    /// # Examples
    ///
    /// Example using the [`Queue`]:
    ///
    /// ```
    /// use trait_based_collection::{prelude::*, Queue};
    ///
    /// let mut queue: Queue<i32> = Queue::new_default();
    /// ```
    ///
    /// [`Queue`]: crate::queue::Queue
    #[must_use]
    fn new_default() -> Self
    where
        Self: Sized;

    /// Creates a new [`Collection`] with a specific capacity.
    ///
    /// This method is useful if you want to avoid the expense of resizing the collection when
    /// adding items. The capacity will be the specified capacity.
    ///
    /// This method is especially useful for collections of [`FixedSizeCollection`] types. As
    /// linked based data structures don't have an extra cost for adding items, they can be used
    /// with an unlimited capacity.
    ///
    /// # Panics
    ///
    /// This method will panic if the specified capacity is equal to zero.
    ///
    /// # Examples
    ///
    /// Example using the [`Deque`]:
    ///
    /// ```
    /// use trait_based_collection::{prelude::*, Deque};
    ///
    /// let mut deque: Deque<usize> = Deque::with_capacity(10);
    /// ```
    ///
    /// [`Deque`]: crate::queue::Deque
    #[must_use]
    fn with_capacity(capacity: usize) -> Self
    where
        Self: Sized,
    {
        assert!(capacity > 0, "capacity must be greater than zero");
        Self::new_default()
    }

    /// Creates a new [`Collection`] with a capacity that is at least the specified capacity.
    ///
    /// This method is useful if you want to avoid the expense of resizing the collection when
    /// adding items. The capacity will be the specified capacity, with the capacity to be increased
    /// if needed.
    ///
    /// This method is especially useful for collections of [`FixedSizeCollection`] types. As
    /// linked based data structures don't have an extra cost for adding items, they can be used
    /// with an unlimited capacity.
    ///
    /// # Panics
    ///
    /// This method will panic if the specified capacity is equal to zero.
    ///
    /// # Examples
    ///
    /// Example using the [`CircularDeque`]:
    ///
    /// ```
    /// use trait_based_collection::{prelude::*, CircularDeque};
    ///
    /// let mut circular_deque: CircularDeque<usize> = CircularDeque::with_approximate_capacity(10);
    /// ```
    ///
    /// [`CircularDeque`]: crate::queue::CircularDeque
    #[must_use]
    fn with_approximate_capacity(approx_capacity: usize) -> Self
    where
        Self: Sized,
    {
        assert!(
            approx_capacity > 0,
            "approx_capacity must be greater than zero"
        );
        Self::with_capacity(approx_capacity)
    }

    /// Adds an item to the [`Collection`].
    ///
    /// # Examples
    ///
    /// Example using the [`Stack`]:
    ///
    /// ```
    /// use trait_based_collection::{prelude::*, Stack};
    ///
    /// let mut stack = Stack::new_default();
    /// stack.add(10);
    /// assert_eq!(stack.len(), 1);
    /// ```
    ///
    /// [`Stack`]: crate::stack::Stack
    fn add(&mut self, value: T);

    /// Removes an item from the [`Collection`].
    ///
    /// The item that will be removed will depend on the type of data structure. For example,
    /// the [`Stack`] type will remove the last item added to the stack. The [`Queue`] type will
    /// remove the first item added to the queue.
    ///
    /// # Examples
    ///
    /// Example using the [`ArrayStack`]:
    ///
    /// ```
    /// use trait_based_collection::{import, ArrayStack};
    /// import!();
    ///
    /// # fn main() {
    /// let mut stack = array_stack![0, 1, 2, 3, 4];
    ///
    /// for i in (0..5).rev() {
    ///     assert_eq!(stack.remove().unwrap(), i);
    /// }
    ///
    /// assert_eq!(stack.remove(), None);
    /// # }
    /// ```
    ///
    /// [`Stack`]: crate::stack::Stack
    /// [`Queue`]: crate::queue::Queue
    /// [`ArrayStack`]: crate::stack::ArrayStack
    fn remove(&mut self) -> Option<T>;

    /// Clears all items from the [`Collection`] while keeping the capacity.
    ///
    /// This method is useful if you want to reuse the collection . It will not free any memory.
    ///
    /// # Examples
    ///
    /// Example using the [`Queue`]:
    ///
    /// ```
    /// use trait_based_collection::{prelude::*, Queue};
    ///
    /// let mut queue = Queue::new_default();
    /// queue.add(0);
    ///
    /// assert!(!queue.is_empty());
    /// queue.clear();
    /// assert!(queue.is_empty());
    /// ```
    ///
    /// [`Queue`]: crate::queue::Queue
    fn clear(&mut self) {
        while !self.is_empty() {
            self.remove()
                .expect("The collection is not empty, so remove should never return None");
        }
    }

    /// Returns an immutable reference of the item that will be removed next.
    ///
    /// # Examples
    ///
    /// Example using the [`Deque`]:
    ///
    /// ```
    /// use trait_based_collection::{import, Deque};
    /// import!();
    ///
    /// # fn main() {
    /// let mut queue = deque![0, 1, 2, 3, 4];
    ///
    /// assert_eq!(queue.peek(), Some(&0));
    /// # }
    /// ```
    ///
    /// [`Deque`]: crate::queue::Deque
    fn peek(&'a self) -> Option<Self::ItemRef> {
        self.iter().next()
    }

    /// Returns a mutable reference of the item that will be removed next.
    ///
    /// # Examples
    ///
    /// Example using the [`CircularDeque`]:
    ///
    /// ```
    /// use trait_based_collection::{import, CircularDeque};
    /// import!();
    ///
    /// # fn main() {
    /// let mut queue = circular_deque![0, 1, 2, 3, 4];
    ///
    /// assert_eq!(queue.peek(), Some(&0));
    /// # }
    /// ```
    ///
    /// [`CircularDeque`]: crate::queue::CircularDeque
    fn peek_mut(&'a mut self) -> Option<Self::ItemMut> {
        self.iter_mut().next()
    }

    /// Returns a immutable reference to the n-th item in the [`Collection`].
    ///
    /// This should return the same item as if we removed `n-1` items from the [`Collection`] and
    /// returned the last item.
    ///
    /// # Examples
    ///
    /// Example using the [`Stack`]:
    ///
    /// ```
    /// use trait_based_collection::{import, Stack};
    /// import!();
    ///
    /// # fn main() {
    /// let mut stack = stack![0, 1, 2, 3, 4];
    ///
    /// assert_eq!(stack.get(3), Some(&1));
    /// # }
    /// ```
    ///
    /// [`Stack`]: crate::stack::Stack
    fn get(&'a self, index: usize) -> Option<Self::ItemRef> {
        self.iter().nth(index)
    }

    /// Returns a mutable reference to the n-th item in the [`Collection`].
    ///
    /// This should return the same item as if we removed `n-1` items from the [`Collection`] and
    /// returned the last item.
    ///
    /// # Examples
    ///
    /// Example using the [`ArrayStack`]:
    ///
    /// ```
    /// use trait_based_collection::{import, ArrayStack};
    /// import!();
    ///
    /// # fn main() {
    /// let mut stack = array_stack![0, 1, 2, 3, 4];
    ///
    /// assert_eq!(stack.get_mut(1), Some(&mut 3));
    /// # }
    /// ```
    ///
    /// [`ArrayStack`]: crate::stack::ArrayStack
    fn get_mut(&'a mut self, index: usize) -> Option<Self::ItemMut> {
        self.iter_mut().nth(index)
    }

    /// Searches for an item in the [`Collection`] and returns its index if found.
    /// Returns `None` if the item is not found.
    ///
    /// The default implementation uses [`iter`] to find the item with a linear search.
    ///
    /// # Examples
    ///
    /// Example using the [`Queue`]:
    ///
    /// ```
    /// use trait_based_collection::{import, Queue};
    /// import!();
    ///
    /// # fn main() {
    /// let mut queue = queue![4, 1, 0, 2, 3];
    ///
    /// assert_eq!(queue.find(&2), Some(3));
    /// # }
    /// ```
    ///
    /// [`Queue`]: crate::queue::Queue
    /// [`iter`]: Iterators::iter
    fn find(&'a self, value: &T) -> Option<usize>
    where
        T: PartialEq,
    {
        self.iter().position(|x| *x == *value)
    }

    /// Checks if an item is in the [`Collection`].
    ///
    /// The default implementation uses [`find`] to check if the item is in the collection .
    ///
    /// # Examples
    ///
    /// Example using the [`Deque`]:
    ///
    /// ```
    /// use trait_based_collection::{import, Deque};
    /// import!();
    ///
    /// # fn main() {
    /// let mut queue = deque![0, 1, 2, 3, 4];
    ///
    /// assert!(queue.contains(&3));
    /// # }
    /// ```
    ///
    /// [`Deque`]: crate::queue::Deque
    /// [`find`]: Collection::find
    fn contains(&'a self, value: &T) -> bool
    where
        T: PartialEq,
    {
        self.find(value).is_some()
    }

    /// Returns the number of items in the [`Collection`].
    ///
    /// # Examples
    ///
    /// Example using the [`CircularDeque`]:
    ///
    /// ```
    /// use trait_based_collection::{prelude::*, CircularDeque};
    ///
    /// let mut queue = CircularDeque::new_default();
    /// assert_eq!(queue.len(), 0);
    ///
    /// for i in 0..10 {
    ///    queue.add(i);
    /// }
    ///
    /// assert_eq!(queue.len(), 10);
    /// ```
    ///
    /// [`CircularDeque`]: crate::queue::CircularDeque
    fn len(&self) -> usize;

    /// Checks if the [`Collection`] is empty.
    ///
    /// # Examples
    ///
    /// Example using the [`Stack`]:
    ///
    /// ```
    /// use trait_based_collection::{prelude::*, Stack};
    ///
    /// let mut stack = Stack::new_default();
    ///
    /// assert!(stack.is_empty());
    /// stack.add(0);
    /// assert!(!stack.is_empty());
    /// ```
    ///
    /// [`Stack`]: crate::stack::Stack
    fn is_empty(&self) -> bool {
        self.len() == 0
    }
}

/// Different modes of action when the [`FixedSizeCollection`] is full. Depending on the mode, the
/// collection will behave differently through the [`check_expansion`] method.
///
/// There are four modes of expansion:
/// 1. [`Panic`] - The collection will panic when the capacity is reached.
/// 2. [`Ignore`] - The collection will ignore the addition of the new item.
/// 3. [`Overwrite`] - The collection will overwrite the an item when the capacity is reached.
/// 4. [`Expand`] - The collection will expand the capacity by a specific factor. The factor must
///     be greater than `1.0`. If the factor is `1.0`, the function will `panic!`. This is the
///     default mode with a factor of `2.0`.
///
/// # Examples
///
/// Example on how the expansion is checked in [`FixedSizeCollection`] through the
/// [`check_expansion`] method:
///
/// ```
/// use trait_based_collection::prelude::*;
///
/// fn check_expansion<'a, T, C: FixedSizeCollection<'a, T>>(mut collection: C) -> bool {
///     if collection.is_full() {
///         match collection.mode() {
///             ExpansionMode::Panic => {
///                 panic!("The collection is full");
///             }
///             ExpansionMode::Ignore => {
///                 return true;
///             }
///             ExpansionMode::Overwrite => {
///                 collection.remove();
///             }
///             ExpansionMode::Expand(factor) => {
///                 if *factor < 1.0 {
///                     panic!("Expand factor must be greater than 1");
///                 }
///                 let size = ((*factor - 1.0) * collection.capacity() as f64).floor() as usize;
///                 collection.expand(size);
///             }
///         }
///     }
///     false
/// }
/// ```
///
/// [`Panic`]: ExpansionMode::Panic
/// [`Ignore`]: ExpansionMode::Ignore
/// [`Overwrite`]: ExpansionMode::Overwrite
/// [`Expand`]: ExpansionMode::Expand
#[derive(Debug)]
pub enum ExpansionMode {
    /// The collection will panic when the capacity is reached.
    Panic,
    /// The collection will ignore the addition of the new item.
    Ignore,
    /// The collection will overwrite the an item when the capacity is reached. This means that
    /// before the new item is added, an item is removed by calling the [`remove`] method.
    ///
    /// [`remove`]: Collection::remove
    Overwrite,
    /// The collection will expand the capacity by a specific factor. The factor must be greater
    /// than `1.0`. If the factor is `1.0`, the function will `panic!`. This is the default mode
    /// with a factor of `2.0`.
    Expand(f64),
}

impl PartialEq for ExpansionMode {
    fn eq(&self, other: &Self) -> bool {
        match (self, other) {
            (Self::Panic, Self::Panic)
            | (Self::Ignore, Self::Ignore)
            | (Self::Overwrite, Self::Overwrite) => true,
            (ExpansionMode::Expand(a), ExpansionMode::Expand(b)) => a == b,
            _ => false,
        }
    }
}

impl Default for ExpansionMode {
    fn default() -> Self {
        Self::Expand(2.0)
    }
}

/// A [`Collection`] that can easily be expanded, as the capacity is fixed. Normally, this are data
/// structures that use a fixed size buffer in memory ([`Array`]-like).
///
/// Similar to [`Collection`], the [`FixedSizeCollection`] is a trait that is generic over any type
/// without the need of any extra traits. This allows the user to create a collection of any type
/// that they want.
///
/// To create a new [`FixedSizeCollection`], the user must add the following extra code into the
/// [`add`] method at the beginning of the method. This code will manage the expansion of the
/// collection depending on the [`ExpansionMode`] of the collection :
///
/// ```text
/// if check_expansion(self) {
///     return;
/// }
/// ```
///
/// An alternative way is to call the [`check_expansion_add`] macro. This macro will add the
/// the previous code into the [`add`] method.
///
/// For a full example, see the Examples section.
///
/// The trait provide extra methods related with the capacity of the collection . The capacity is
/// the amount of items that the collection can hold. The [`FixedSizeCollection`] provides the
/// following methods:
///
/// - [`with_mode`] - Creates a new [`FixedSizeCollection`] with the specified capacity and
/// [`ExpansionMode`].
/// - [`capacity`] - Returns the maximum amount of items that the collection can hold.
/// - [`expand`] - Expands the capacity of the collection by a specific amount. This amount or more
/// will be added to the capacity.
/// - [`is_full`] - Returns `true` if the collection is full. Checks if the length of the collection
/// is equal to the capacity.
/// - [`mode`] - Returns the [`ExpansionMode`] of expansion of the collection .
///
/// For implementation of the [`FixedSizeCollection`] data structure, there also exists the
/// following method:
///
/// - [`check_expansion`] - Checks if the collection is full and if it is, it will behave depending
/// on the [`mode`] of the collection .
///
/// # Examples
///
/// Expands the example shown in [`Collection`] by modifying a bit the struct with a mode and
/// implementing the [`FixedSizeCollection`] trait. The example contains only the modified code.
///
/// ```
/// use trait_based_collection::{prelude::*, macros::{check_expansion_add, All}};
///
/// #[derive(All)]
/// struct MyCollection<T> {
///     data: Vec<T>,
///     mode: ExpansionMode,
/// }
/// #
/// # impl<'a, T: 'a> Iterators<'a, T> for MyCollection<T> {
/// #     type ItemRef = &'a T;
/// #     type ItemMut = &'a mut T;
/// #
/// #     type Iter = std::slice::Iter<'a, T>;
/// #     type IterMut = std::slice::IterMut<'a, T>;
/// #
/// #     fn iter(&'a self) -> Self::Iter {
/// #         self.data.iter()
/// #     }
/// #
/// #     fn iter_mut(&'a mut self) -> Self::IterMut {
/// #         self.data.iter_mut()
/// #     }
/// # }
///
/// impl<'a, T: 'a> Collection<'a, T> for MyCollection<T> {
///     fn new_default() -> Self where Self: Sized {
///         MyCollection::with_mode(16, ExpansionMode::default())
///     }
///
///     fn with_capacity(capacity: usize) -> Self {
///         MyCollection::with_mode(capacity, ExpansionMode::Panic)
///     }
///
///     fn with_approximate_capacity(approx_capacity: usize) -> Self{
///         MyCollection::with_mode(approx_capacity, ExpansionMode::default())
///     }
///
///     #[check_expansion_add]
///     fn add(&mut self, value: T) {
///         self.data.push(value);
///     }
/// #
/// #     fn remove(&mut self) -> Option<T> {
/// #         self.data.pop()
/// #     }
/// #
/// #     fn len(&self) -> usize {
/// #         self.data.len()
/// #     }
/// }
///
/// impl<'a, T: 'a> FixedSizeCollection<'a, T> for MyCollection<T> {
///     fn with_mode(capacity: usize, mode: ExpansionMode) -> Self {
///         assert_ne!(capacity, 0, "Capacity must be greater than 0");
///         MyCollection {
///            data: Vec::with_capacity(capacity),
///            mode,
///         }
///     }
///
///     fn capacity(&self) -> usize {
///         self.data.capacity()
///     }
///
///     fn expand(&mut self, extra_size: usize) {
///         self.data.reserve(extra_size);
///     }
///
///     fn mode(&self) -> &ExpansionMode {
///         &self.mode
///     }
/// }
/// ```
///
/// # Safety
///
/// The [`FixedSizeCollection`] trait is currently safe as it is based on the [`Vec`]
/// implementation. However, in the future, [`Vec`] could also be implemented in the project and
/// the [`FixedSizeCollection`] trait would be unsafe. Similarly to [`Collection`], the trait
/// is implemented in unsafe code but the usage of the trait should be safe.
///
/// [`Array`]: https://doc.rust-lang.org/std/primitive.array.html
/// [`add`]: Collection::add
/// [`check_expansion_add`]: macro@trait_based_collection_macros::check_expansion_add
/// [`capacity`]: FixedSizeCollection::capacity
/// [`expand`]: FixedSizeCollection::expand
/// [`is_full`]: FixedSizeCollection::is_full
/// [`mode`]: FixedSizeCollection::mode
/// [`with_mode`]: FixedSizeCollection::with_mode
#[allow(clippy::module_name_repetitions)]
pub trait FixedSizeCollection<'a, T>: Collection<'a, T> {
    /// Creates a new fixed size [`Collection`] with the specified capacity and [`ExpansionMode`].
    ///
    /// # Panics
    ///
    /// This method will panic if the specified capacity is equal to zero.
    ///
    /// # Examples
    ///
    /// Example using [`ArrayStack`]:
    ///
    /// ```
    /// use trait_based_collection::{prelude::*, ArrayStack};
    ///
    /// let mut stack: ArrayStack<i32> = ArrayStack::with_mode(16, ExpansionMode::Expand(2.0));
    /// assert_eq!(stack.capacity(), 16);
    /// assert_eq!(stack.mode(), &ExpansionMode::Expand(2.0));
    /// ```
    ///
    /// [`ArrayStack`]: crate::stack::ArrayStack
    #[must_use]
    fn with_mode(capacity: usize, mode: ExpansionMode) -> Self
    where
        Self: Sized;

    /// Returns the maximum amount of items that the collection can hold without expanding.
    ///
    /// The number of items on the [`FixedSizeCollection`] can never be greater than the capacity.
    ///
    /// # Examples
    ///
    /// Example using [`CircularDeque`]:
    ///
    /// ```
    /// use trait_based_collection::{prelude::*, CircularDeque};
    ///
    /// let mut queue: CircularDeque<usize> = CircularDeque::with_capacity(10);
    /// assert_eq!(queue.capacity(), 10);
    /// ```
    ///
    /// [`CircularDeque`]: crate::queue::CircularDeque
    fn capacity(&self) -> usize;

    /// Expands the capacity of the collection by at least the specified amount. This amount or more
    /// will be dded to the capacity.
    ///
    /// This method is called automatically if the [`mode`] of the collection is [`Expand`], it will
    /// be called when the collection is full through the [`check_expansion`] method.
    ///
    /// This method ensures that after the expansion, the integrity of the [`FixedSizeCollection`]
    /// is not compromised.
    ///
    /// # Examples
    ///
    /// Example using [`ArrayStack`]:
    ///
    /// ```
    /// use trait_based_collection::{prelude::*, ArrayStack};
    ///
    /// let mut stack: ArrayStack<usize> = ArrayStack::with_capacity(10);
    /// assert_eq!(stack.capacity(), 10);
    /// stack.expand(10);
    /// assert!(stack.capacity() >= 20);
    /// ```
    ///
    /// [`mode`]: FixedSizeCollection::mode
    /// [`Expand`]: ExpansionMode::Expand
    /// [`ArrayStack`]: crate::stack::ArrayStack
    fn expand(&mut self, extra_size: usize);

    /// Checks if the number of items in the [`FixedSizeCollection`] is equal to the capacity.
    ///
    /// # Examples
    ///
    /// Example using [`CircularDeque`]:
    ///
    /// ```
    /// use trait_based_collection::{prelude::*, CircularDeque};
    ///
    /// let mut queue = CircularDeque::with_capacity(10);
    /// assert!(!queue.is_full());
    ///
    /// for i in 0..10 {
    ///    queue.add(i);
    /// }
    /// assert!(queue.is_full());
    /// ```
    ///
    /// [`CircularDeque`]: crate::queue::CircularDeque
    fn is_full(&self) -> bool {
        self.len() == self.capacity()
    }

    /// Returns the [`ExpansionMode`] of the collection . This is used to determine how the
    /// collection will behave when it is full.
    ///
    /// The possibility of modifying the [`ExpansionMode`] will be determined by the implementation.
    /// The built-in implementations of [`FixedSizeCollection`] will allow modifications through
    /// a public attribute.
    ///
    /// # Examples
    ///
    /// Example using [`ArrayStack`] with default constructor:
    ///
    /// ```
    /// use trait_based_collection::{prelude::*, ArrayStack};
    ///
    /// let mut stack: ArrayStack<u8> = ArrayStack::default();
    /// assert_eq!(stack.mode(), &ExpansionMode::default());
    /// ```
    ///
    /// Another example but using the [`with_capacity`] constructor:
    ///
    /// ```
    /// use trait_based_collection::{prelude::*, ArrayStack};
    ///
    /// let mut stack: ArrayStack<u8> = ArrayStack::with_capacity(10);
    /// assert_eq!(stack.mode(), &ExpansionMode::Panic);
    /// ```
    ///
    /// [`ArrayStack`]: crate::stack::ArrayStack
    /// [`with_capacity`]: crate::stack::ArrayStack::with_capacity
    fn mode(&self) -> &ExpansionMode;
}

/// Checks if the collection is full and if it is, expands the collection depending on the
/// [`ExpansionMode`]. Also, returns `true` if the [`add`] method should finish execution.
///
/// This method should be called before adding an item to the collection . If the collection is
/// full, the method will do:
/// - [`Panic`]: The method will panic.
/// - [`Ignore`]: The item will not be added to the collection and will npt
/// - [`Overwrite`]: An item will be removed from the collection and the new item will be added.
/// In this case, the [`remove`] method will be called.
/// - [`Expand`]: The collection will be expanded and the item will be added. In this case, the
/// [`expand`] method will be called.
///
/// Instead of using this method inside the [`add`] method, it is recommended to use the
/// [`check_expansion_add`] macro.
///
/// # Panics
///
/// This method will panic if [`mode`] is [`Panic`] and the collection is full.
///
/// # Examples
///
/// Example without using [`check_expansion_add`] macro on an [`add`] method:
///
/// ```
/// # use trait_based_collection::{prelude::*, macros::All};
/// use trait_based_collection::macros::check_expansion_add;
/// #
/// # #[derive(All)]
/// # struct MyCollection<T> {
/// #     data: Vec<T>,
/// #     mode: ExpansionMode,
/// # }
/// #
/// # impl<'a, T: 'a> Iterators<'a, T> for MyCollection<T> {
/// #     type ItemRef = &'a T;
/// #     type ItemMut = &'a mut T;
/// #
/// #     type Iter = std::slice::Iter<'a, T>;
/// #     type IterMut = std::slice::IterMut<'a, T>;
/// #
/// #     fn iter(&'a self) -> Self::Iter {
/// #         self.data.iter()
/// #     }
/// #
/// #     fn iter_mut(&'a mut self) -> Self::IterMut {
/// #         self.data.iter_mut()
/// #     }
/// # }
/// #
/// # impl<'a, T: 'a> Collection<'a, T> for MyCollection<T> {
/// #     fn new_default() -> Self where Self: Sized {
/// #         MyCollection::with_mode(16, ExpansionMode::default())
/// #     }
/// #
/// #     fn with_capacity(capacity: usize) -> Self {
/// #         MyCollection::with_mode(capacity, ExpansionMode::Panic)
/// #     }
/// #
/// #     fn with_approximate_capacity(approx_capacity: usize) -> Self{
/// #         MyCollection::with_mode(approx_capacity, ExpansionMode::default())
/// #     }
/// #
///     #[check_expansion_add]
///     fn add(&mut self, value: T) {
///         self.data.push(value);
///     }
/// #
/// #     fn remove(&mut self) -> Option<T> {
/// #         self.data.pop()
/// #     }
/// #
/// #     fn len(&self) -> usize {
/// #         self.data.len()
/// #     }
/// # }
/// #
/// # impl<'a, T: 'a> FixedSizeCollection<'a, T> for MyCollection<T> {
/// #     fn with_mode(capacity: usize, mode: ExpansionMode) -> Self {
/// #         assert_ne!(capacity, 0, "Capacity must be greater than 0");
/// #         MyCollection {
/// #            data: Vec::with_capacity(capacity),
/// #            mode,
/// #         }
/// #     }
/// #
/// #     fn capacity(&self) -> usize {
/// #         self.data.capacity()
/// #     }
/// #
/// #     fn expand(&mut self, extra_size: usize) {
/// #         self.data.reserve(extra_size);
/// #     }
/// #
/// #     fn mode(&self) -> &ExpansionMode {
/// #         &self.mode
/// #     }
/// # }
/// ```
///
/// Alternative example without using [`check_expansion_add`] macro on an [`add`] method:
///
/// ```
/// # use trait_based_collection::{prelude::*, macros::All};
/// use trait_based_collection::collection::check_expansion;
/// #
/// # #[derive(All)]
/// # struct MyCollection<T> {
/// #     data: Vec<T>,
/// #     mode: ExpansionMode,
/// # }
/// #
/// # impl<'a, T: 'a> Iterators<'a, T> for MyCollection<T> {
/// #     type ItemRef = &'a T;
/// #     type ItemMut = &'a mut T;
/// #
/// #     type Iter = std::slice::Iter<'a, T>;
/// #     type IterMut = std::slice::IterMut<'a, T>;
/// #
/// #     fn iter(&'a self) -> Self::Iter {
/// #         self.data.iter()
/// #     }
/// #
/// #     fn iter_mut(&'a mut self) -> Self::IterMut {
/// #         self.data.iter_mut()
/// #     }
/// # }
/// #
/// # impl<'a, T: 'a> Collection<'a, T> for MyCollection<T> {
/// #     fn new_default() -> Self where Self: Sized {
/// #         MyCollection::with_mode(16, ExpansionMode::default())
/// #     }
/// #
/// #     fn with_capacity(capacity: usize) -> Self {
/// #         MyCollection::with_mode(capacity, ExpansionMode::Panic)
/// #     }
/// #
/// #     fn with_approximate_capacity(approx_capacity: usize) -> Self{
/// #         MyCollection::with_mode(approx_capacity, ExpansionMode::default())
/// #     }
/// #
///     fn add(&mut self, value: T) {
///         if check_expansion(self) {
///             return;
///         }
///         self.data.push(value);
///     }
/// #
/// #     fn remove(&mut self) -> Option<T> {
/// #         self.data.pop()
/// #     }
/// #
/// #     fn len(&self) -> usize {
/// #         self.data.len()
/// #     }
/// # }
/// #
/// # impl<'a, T: 'a> FixedSizeCollection<'a, T> for MyCollection<T> {
/// #     fn with_mode(capacity: usize, mode: ExpansionMode) -> Self {
/// #         assert_ne!(capacity, 0, "Capacity must be greater than 0");
/// #         MyCollection {
/// #            data: Vec::with_capacity(capacity),
/// #            mode,
/// #         }
/// #     }
/// #
/// #     fn capacity(&self) -> usize {
/// #         self.data.capacity()
/// #     }
/// #
/// #     fn expand(&mut self, extra_size: usize) {
/// #         self.data.reserve(extra_size);
/// #     }
/// #
/// #     fn mode(&self) -> &ExpansionMode {
/// #         &self.mode
/// #     }
/// # }
/// ```
///
/// [`add`]: Collection::add
/// [`Panic`]: ExpansionMode::Panic
/// [`Ignore`]: ExpansionMode::Ignore
/// [`Overwrite`]: ExpansionMode::Overwrite
/// [`remove`]: Collection::remove
/// [`Expand`]: ExpansionMode::Expand
/// [`expand`]: FixedSizeCollection::expand
/// [`mode`]: FixedSizeCollection::mode
pub fn check_expansion<'a, T, C: FixedSizeCollection<'a, T>>(collection: &mut C) -> bool {
    if collection.is_full() {
        match collection.mode() {
            ExpansionMode::Panic => {
                panic!("The collection is full");
            }
            ExpansionMode::Ignore => {
                return true;
            }
            ExpansionMode::Overwrite => {
                collection.remove(); // Tries to remove an element from the collection
            }
            ExpansionMode::Expand(factor) => {
                assert!(*factor >= 1.0, "Expand factor must be greater than 1");
                // We are sure that the cast is safe
                #[allow(clippy::cast_precision_loss)]
                #[allow(clippy::cast_sign_loss)]
                #[allow(clippy::cast_possible_truncation)]
                let size = ((*factor - 1.0) * collection.capacity() as f64).floor() as usize;
                collection.expand(size);
            }
        }
    }
    false
}

#[cfg(test)]
mod test_fixed_size_collection {
    use super::*;
    use crate::{ArrayStack, CircularDeque};
    use trait_based_collection_macros::test_collection;

    #[test_collection(ArrayStack, CircularDeque)]
    fn test_capacity<C: FixedSizeCollection<i32>>(_collection: C) {
        let mut collection = C::with_capacity(10);
        assert_eq!(collection.capacity(), 10);

        for i in 0..10 {
            collection.add(i);
        }
        assert_eq!(collection.capacity(), 10);

        let mut collection: C<i32> = C::with_capacity(100);
        assert_eq!(collection.capacity(), 100);

        for i in 0..100 {
            collection.add(i);
        }
        assert_eq!(collection.capacity(), 100);

        let collection: C<i32> = C::new_default();
        assert_eq!(collection.capacity(), 16);
    }

    #[test_collection(ArrayStack, CircularDeque)]
    fn test_expand<C: FixedSizeCollection<i32>>(_collection: C) {
        let mut collection = C::with_capacity(13);
        assert_eq!(collection.capacity(), 13);
        // Expand with empty collection
        collection.expand(11);
        assert!(collection.capacity() >= 24);

        // Simulates random usage of collection
        for _ in 0..7 {
            for i in 0..5 {
                collection.add(i);
            }
            for _ in 0..5 {
                collection.remove().unwrap();
            }
        }
        // Fill half-collection
        for i in 0..12 {
            collection.add(i);
        }
        assert_eq!(collection.len(), 12);
        assert!(collection.capacity() >= 24);

        // Expand with half-collection
        collection.expand(3);
        assert!(collection.capacity() >= 27);
    }

    #[test_collection(ArrayStack, CircularDeque)]
    fn test_is_full<C: FixedSizeCollection<i32>>(_collection: C) {
        let mut collection = C::with_mode(10, ExpansionMode::Expand(2.0));
        assert!(!collection.is_full());
        for i in 0..10 {
            collection.add(i);
        }
        assert!(collection.is_full());

        // Expands the collection
        collection.add(10);
        assert!(!collection.is_full());
    }

    #[test_collection(ArrayStack, CircularDeque)]
    fn test_mode<C: FixedSizeCollection<i32>>(_collection: C) {
        let collection: C<i32> = C::with_mode(10, ExpansionMode::Expand(2.0));
        assert_eq!(collection.mode(), &ExpansionMode::Expand(2.0));

        let collection: C<i32> = C::with_mode(10, ExpansionMode::Overwrite);
        assert_eq!(collection.mode(), &ExpansionMode::Overwrite);

        let collection: C<i32> = C::with_mode(10, ExpansionMode::Ignore);
        assert_eq!(collection.mode(), &ExpansionMode::Ignore);

        let collection: C<i32> = C::with_mode(10, ExpansionMode::Panic);
        assert_eq!(collection.mode(), &ExpansionMode::Panic);
    }
}

#[cfg(test)]
mod test_modes {
    use super::*;
    use crate::{ArrayStack, CircularDeque};
    use trait_based_collection_macros::test_collection;

    #[test_collection(ArrayStack, CircularDeque; should_panic)]
    fn test_mode_panic<C: FixedSizeCollection<i32>>(_collection: C) {
        let mut collection = C::with_mode(5, ExpansionMode::Panic);
        for i in 0..5 {
            collection.add(i);
        }

        // Chis should panic
        collection.add(5);
    }

    #[test_collection(ArrayStack, CircularDeque)]
    fn test_mode_ignore<C: FixedSizeCollection<i32> + IntoIterator<Item = i32>>(_collection: C) {
        let mut collection = C::with_mode(5, ExpansionMode::Ignore);
        for i in 0..5 {
            collection.add(i);
        }

        for i in 10..15 {
            collection.add(i);
            assert_eq!(collection.len(), 5);
            assert_eq!(collection.capacity(), 5);
        }
        // Only numbers of the first loop should be in the collection
        let mut collection_vec = collection.into_iter().collect::<Vec<_>>();
        collection_vec.sort_unstable();
        assert_eq!(collection_vec, vec![0, 1, 2, 3, 4]);
    }

    #[test_collection(ArrayStack, CircularDeque)]
    fn test_mode_overwrite<C: FixedSizeCollection<i32> + IntoIterator<Item = i32>>(_collection: C) {
        let mut collection = C::with_mode(5, ExpansionMode::Overwrite);
        for i in 0..5 {
            collection.add(i);
        }

        for i in 10..15 {
            collection.add(i);
            assert_eq!(collection.len(), 5);
            assert_eq!(collection.capacity(), 5);
        }

        // At least one of the numbers of the should be changed in the second loop
        let mut collection_vec = collection.into_iter().collect::<Vec<_>>();
        collection_vec.sort_unstable();
        assert_ne!(collection_vec, vec![0, 1, 2, 3, 4]);
    }

    #[test_collection(ArrayStack, CircularDeque)]
    fn test_mode_expand<C: FixedSizeCollection<i32> + IntoIterator<Item = i32>>(_collection: C) {
        let mut collection = C::with_mode(5, ExpansionMode::Expand(2.0));
        for i in 0..5 {
            collection.add(i);
        }

        for i in 10..15 {
            collection.add(i);
            assert_ne!(collection.len(), 5);
            assert_ne!(collection.capacity(), 5);
        }
        assert!(collection.capacity() >= 10);

        // All numbers should be in the collection
        let mut collection_vec = collection.into_iter().collect::<Vec<_>>();
        collection_vec.sort_unstable();
        assert_eq!(collection_vec, vec![0, 1, 2, 3, 4, 10, 11, 12, 13, 14]);
    }
}