tract_tensorflow/ops/
quant.rs1use tract_hir::internal::*;
2use tract_hir::ops;
3use tract_hir::ops::math::round_ties_to_even;
4
5use crate::model::ParsingContext;
6use crate::model::TfOpRegister;
7use crate::tfpb::tensorflow::NodeDef;
8
9pub fn register_all_ops(reg: &mut TfOpRegister) {
10 reg.insert("FakeQuantWithMinMaxVars", fake_quant_with_min_max_vars);
11}
12
13fn fake_quant_with_min_max_vars(
14 _ctx: &ParsingContext,
15 node: &NodeDef,
16) -> TractResult<Box<dyn InferenceOp>> {
17 let narrow_range = node.get_attr_bool("narrow_range")?;
18 let num_bits = node.get_attr_int("num_bits")?;
19 Ok(expand(FakeQuantWithMinMaxVars::new(narrow_range, num_bits)))
20}
21
22#[derive(Clone, Debug, new, Hash)]
23struct FakeQuantWithMinMaxVars {
24 narrow_range: bool,
25 num_bits: usize,
26}
27
28
29
30impl FakeQuantWithMinMaxVars {
31 fn step(&self, min: &Tensor, max: &Tensor) -> TractResult<f32> {
32 let min = min.to_scalar::<f32>()?;
33 let max = max.to_scalar::<f32>()?;
34 let amplitude = max - min;
35 let scale_len = 2_usize.pow(self.num_bits as u32) - 1 - self.narrow_range as usize;
36 Ok(amplitude / scale_len as f32)
37 }
38}
39
40impl Expansion for FakeQuantWithMinMaxVars {
41 fn name(&self) -> StaticName {
42 "FakeQuantWithMinMaxVars".into()
43 }
44
45 fn rules<'r, 'p: 'r, 's: 'r>(
46 &'s self,
47 s: &mut Solver<'r>,
48 inputs: &'p [TensorProxy],
49 outputs: &'p [TensorProxy],
50 ) -> InferenceResult {
51 check_input_arity(inputs, 3)?;
52 check_output_arity(outputs, 1)?;
53 s.equals(&inputs[0].datum_type, &inputs[1].datum_type)?;
54 s.equals(&inputs[0].datum_type, &inputs[2].datum_type)?;
55 s.equals(&inputs[1].shape, shapefactoid!())?;
56 s.equals(&inputs[2].shape, shapefactoid!())?;
57 s.equals(&inputs[0].datum_type, &outputs[0].datum_type)?;
58 s.equals(&inputs[0].shape, &outputs[0].shape)?;
59 Ok(())
60 }
61
62 fn wire(
63 &self,
64 prefix: &str,
65 target: &mut TypedModel,
66 inputs: &[OutletId],
67 ) -> TractResult<TVec<OutletId>> {
68 if let (Some(min), Some(max)) = (
69 target.outlet_fact(inputs[1])?.konst.as_ref(),
70 target.outlet_fact(inputs[2])?.konst.as_ref(),
71 ) {
72 let rank = target.outlet_fact(inputs[0])?.rank();
73 macro_rules! cst {
74 ($id:ident, $value: expr) => {
75 let $id = tensor0($value).broadcast_into_rank(rank)?;
76 let $id = target.add_const(prefix.to_string() + "." + stringify!($id), $id)?;
77 };
78 }
79 let step = self.step(min, max)?;
80 let min = *min.to_scalar::<f32>()?;
81 let max = *max.to_scalar::<f32>()?;
82 let min_adj = step * round_ties_to_even(min / step);
83 let max_adj = max - min + min_adj;
84 let wire = inputs[0];
85 cst!(min_adj, min_adj);
86 cst!(max_adj, max_adj);
87 cst!(step, step);
88 let wire = target.wire_node(
89 format!("{prefix}.clamp_min"),
90 ops::math::max(),
91 &[wire, min_adj],
92 )?[0];
93 let wire = target.wire_node(
94 format!("{prefix}.clamp_max"),
95 ops::math::min(),
96 &[max_adj, wire],
97 )?[0];
98 let wire = target.wire_node(
99 format!("{prefix}.sub-min"),
100 ops::math::sub(),
101 &[wire, min_adj],
102 )?[0];
103 let wire = target.wire_node(
104 format!("{prefix}.div-step"),
105 ops::math::div(),
106 &[wire, step],
107 )?[0];
108 let wire = target.wire_node(
109 format!("{prefix}.round"),
110 ops::math::round_half_to_even(),
111 &[wire],
112 )?[0];
113 let wire = target.wire_node(
114 format!("{prefix}.mul-step"),
115 ops::math::mul(),
116 &[wire, step],
117 )?[0];
118 target.wire_node(format!("{prefix}.add-min"), ops::math::add(), &[wire, min_adj])
119 } else {
120 bail!("Operator can not be made a TypedOp.")
121 }
122 }
123}