use tract_hir::internal::*;
use tract_hir::tract_core::trivial_op_state_freeeze;
use crate::model::{ParsingContext, TfOpRegister};
use crate::tfpb::tensorflow::NodeDef;
pub fn register_all_ops(reg: &mut TfOpRegister) {
reg.insert("Assign", |_, _| Ok(Box::<Assign>::default()));
reg.insert("VariableV2", variable_v2);
}
fn variable_v2(_ctx: &ParsingContext, node: &NodeDef) -> TractResult<Box<dyn InferenceOp>> {
let shared_name = node.get_attr_str("shared_name")?;
let shared_name = if !shared_name.is_empty() { Some(shared_name) } else { None };
let container = node.get_attr_str("container")?;
let container = if !container.is_empty() { Some(container) } else { None };
let name = node.name.to_string();
let id = format!("{container:?}#{shared_name:?}#{name}");
let shape = node.get_attr_shape("shape")?;
let dt = node.get_attr_datum_type("dtype")?;
let shape = shape
.into_iter()
.map(|d| {
if d > 0 {
Ok(d as usize)
} else {
bail!("VariableV2 shape contains forbidden negative dim.")
}
})
.collect::<TractResult<TVec<usize>>>()?;
Ok(Box::new(VariableV2::new(container, shared_name, name, id, shape, dt, None)))
}
#[derive(Clone, Debug, new)]
struct VariableV2State;
trivial_op_state_freeeze!(VariableV2State);
impl OpState for VariableV2State {
fn eval(
&mut self,
session: &mut SessionState,
op: &dyn Op,
_inputs: TVec<TValue>,
) -> TractResult<TVec<TValue>> {
let op = op.downcast_ref::<VariableV2>().context("wrong op for variable state")?;
let tensor = session
.tensors
.get(&op.id)
.with_context(|| format!("Could not find state for variable {}", op.id))?;
Ok(tvec!(tensor.clone().into()))
}
}
#[derive(Clone, Debug, new, Hash)]
pub struct VariableV2 {
container: Option<String>,
shared_name: Option<String>,
name: String,
pub id: String,
shape: TVec<usize>,
dt: DatumType,
pub initializer: Option<Arc<Tensor>>,
}
impl Op for VariableV2 {
fn name(&self) -> Cow<str> {
"VariableV2".into()
}
fn info(&self) -> TractResult<Vec<String>> {
if let Some(init) = &self.initializer {
Ok(vec![format!("Initialized to {init:?}")])
} else {
Ok(vec![format!("Uninitialized")])
}
}
op_as_typed_op!();
}
impl EvalOp for VariableV2 {
fn is_stateless(&self) -> bool {
false
}
fn state(
&self,
state: &mut SessionState,
_node_id: usize,
) -> TractResult<Option<Box<dyn OpState>>> {
let tensor = if let Some(init) = &self.initializer {
init.clone().into_tensor()
} else {
unsafe { Tensor::uninitialized_dt(self.dt, &self.shape)? }
};
state.tensors.insert(self.id.clone(), tensor);
Ok(Some(Box::new(VariableV2State)))
}
}
impl InferenceRulesOp for VariableV2 {
fn rules<'r, 'p: 'r, 's: 'r>(
&'s self,
s: &mut Solver<'r>,
inputs: &'p [TensorProxy],
outputs: &'p [TensorProxy],
) -> InferenceResult {
check_input_arity(inputs, 0)?;
check_output_arity(outputs, 1)?;
s.equals(&outputs[0].datum_type, self.dt)?;
s.equals(&outputs[0].shape, ShapeFactoid::from(&*self.shape))?;
Ok(())
}
as_op!();
to_typed!();
}
impl TypedOp for VariableV2 {
as_op!();
fn output_facts(&self, _inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
Ok(tvec!(self.dt.fact(&self.shape)))
}
}
#[derive(Clone, Debug, new)]
struct AssignState;
trivial_op_state_freeeze!(AssignState);
#[derive(Clone, Debug, new, Default, Hash)]
pub struct Assign {
pub var_id: Option<String>,
}
impl Op for Assign {
fn name(&self) -> Cow<str> {
"Assign".into()
}
op_as_typed_op!();
}
impl OpState for AssignState {
fn eval(
&mut self,
session: &mut SessionState,
op: &dyn Op,
mut inputs: TVec<TValue>,
) -> TractResult<TVec<TValue>> {
let (_current, new) = args_2!(inputs);
let op = op.downcast_ref::<Assign>().context("wrong op for variable state")?;
let var_id = if let Some(ref var_id) = op.var_id {
var_id
} else {
bail!("Assign has not been linked to var")
};
let store = session.tensors.get_mut(var_id).unwrap();
if cfg!(debug_assertions)
&& (store.shape() != new.shape() && store.datum_type() != new.datum_type())
{
bail!(
"Invalid assignment to variable. Store is {:?}, assigned value is {:?}",
store,
new
);
}
*store = new.clone().into_tensor();
Ok(tvec!(new))
}
}
impl EvalOp for Assign {
fn is_stateless(&self) -> bool {
false
}
fn state(
&self,
_state: &mut SessionState,
_node_id: usize,
) -> TractResult<Option<Box<dyn OpState>>> {
Ok(Some(Box::new(AssignState)))
}
}
impl InferenceRulesOp for Assign {
fn rules<'r, 'p: 'r, 's: 'r>(
&'s self,
s: &mut Solver<'r>,
inputs: &'p [TensorProxy],
outputs: &'p [TensorProxy],
) -> InferenceResult {
check_input_arity(inputs, 2)?;
check_output_arity(outputs, 1)?;
s.equals(&inputs[0].datum_type, &inputs[1].datum_type)?;
s.equals(&inputs[0].shape, &inputs[1].shape)?;
s.equals(&outputs[0].datum_type, &inputs[0].datum_type)?;
s.equals(&inputs[1].shape, &inputs[0].shape)?;
s.equals(&outputs[0].shape, &inputs[0].shape)?;
s.equals(&outputs[0].value, &inputs[1].value)?;
Ok(())
}
as_op!();
to_typed!();
}
impl TypedOp for Assign {
as_op!();
fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
if inputs[0].datum_type != inputs[1].datum_type || inputs[0].shape != inputs[1].shape {
bail!("Invalid assignement {:?}", inputs);
}
Ok(tvec!(inputs[0].clone()))
}
}