1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
/// Protocol buffer representing a handle to a tensorflow resource. Handles are
/// not valid across executions, but can be serialized back and forth from within
/// a single run.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ResourceHandleProto {
    /// Unique name for the device containing the resource.
    #[prost(string, tag="1")]
    pub device: ::prost::alloc::string::String,
    /// Container in which this resource is placed.
    #[prost(string, tag="2")]
    pub container: ::prost::alloc::string::String,
    /// Unique name of this resource.
    #[prost(string, tag="3")]
    pub name: ::prost::alloc::string::String,
    /// Hash code for the type of the resource. Is only valid in the same device
    /// and in the same execution.
    #[prost(uint64, tag="4")]
    pub hash_code: u64,
    /// For debug-only, the name of the type pointed to by this handle, if
    /// available.
    #[prost(string, tag="5")]
    pub maybe_type_name: ::prost::alloc::string::String,
}
/// Dimensions of a tensor.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TensorShapeProto {
    /// Dimensions of the tensor, such as {"input", 30}, {"output", 40}
    /// for a 30 x 40 2D tensor.  If an entry has size -1, this
    /// corresponds to a dimension of unknown size. The names are
    /// optional.
    ///
    /// The order of entries in "dim" matters: It indicates the layout of the
    /// values in the tensor in-memory representation.
    ///
    /// The first entry in "dim" is the outermost dimension used to layout the
    /// values, the last entry is the innermost dimension.  This matches the
    /// in-memory layout of RowMajor Eigen tensors.
    ///
    /// If "dim.size()" > 0, "unknown_rank" must be false.
    #[prost(message, repeated, tag="2")]
    pub dim: ::prost::alloc::vec::Vec<tensor_shape_proto::Dim>,
    /// If true, the number of dimensions in the shape is unknown.
    ///
    /// If true, "dim.size()" must be 0.
    #[prost(bool, tag="3")]
    pub unknown_rank: bool,
}
/// Nested message and enum types in `TensorShapeProto`.
pub mod tensor_shape_proto {
    /// One dimension of the tensor.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct Dim {
        /// Size of the tensor in that dimension.
        /// This value must be >= -1, but values of -1 are reserved for "unknown"
        /// shapes (values of -1 mean "unknown" dimension).  Certain wrappers
        /// that work with TensorShapeProto may fail at runtime when deserializing
        /// a TensorShapeProto containing a dim value of -1.
        #[prost(int64, tag="1")]
        pub size: i64,
        /// Optional name of the tensor dimension.
        #[prost(string, tag="2")]
        pub name: ::prost::alloc::string::String,
    }
}
/// LINT.IfChange
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
#[repr(i32)]
pub enum DataType {
    /// Not a legal value for DataType.  Used to indicate a DataType field
    /// has not been set.
    DtInvalid = 0,
    /// Data types that all computation devices are expected to be
    /// capable to support.
    DtFloat = 1,
    DtDouble = 2,
    DtInt32 = 3,
    DtUint8 = 4,
    DtInt16 = 5,
    DtInt8 = 6,
    DtString = 7,
    /// Single-precision complex
    DtComplex64 = 8,
    DtInt64 = 9,
    DtBool = 10,
    /// Quantized int8
    DtQint8 = 11,
    /// Quantized uint8
    DtQuint8 = 12,
    /// Quantized int32
    DtQint32 = 13,
    /// Float32 truncated to 16 bits.  Only for cast ops.
    DtBfloat16 = 14,
    /// Quantized int16
    DtQint16 = 15,
    /// Quantized uint16
    DtQuint16 = 16,
    DtUint16 = 17,
    /// Double-precision complex
    DtComplex128 = 18,
    DtHalf = 19,
    DtResource = 20,
    /// Arbitrary C++ data types
    DtVariant = 21,
    DtUint32 = 22,
    DtUint64 = 23,
    /// Do not use!  These are only for parameters.  Every enum above
    /// should have a corresponding value below (verified by types_test).
    DtFloatRef = 101,
    DtDoubleRef = 102,
    DtInt32Ref = 103,
    DtUint8Ref = 104,
    DtInt16Ref = 105,
    DtInt8Ref = 106,
    DtStringRef = 107,
    DtComplex64Ref = 108,
    DtInt64Ref = 109,
    DtBoolRef = 110,
    DtQint8Ref = 111,
    DtQuint8Ref = 112,
    DtQint32Ref = 113,
    DtBfloat16Ref = 114,
    DtQint16Ref = 115,
    DtQuint16Ref = 116,
    DtUint16Ref = 117,
    DtComplex128Ref = 118,
    DtHalfRef = 119,
    DtResourceRef = 120,
    DtVariantRef = 121,
    DtUint32Ref = 122,
    DtUint64Ref = 123,
}
impl DataType {
    /// String value of the enum field names used in the ProtoBuf definition.
    ///
    /// The values are not transformed in any way and thus are considered stable
    /// (if the ProtoBuf definition does not change) and safe for programmatic use.
    pub fn as_str_name(&self) -> &'static str {
        match self {
            DataType::DtInvalid => "DT_INVALID",
            DataType::DtFloat => "DT_FLOAT",
            DataType::DtDouble => "DT_DOUBLE",
            DataType::DtInt32 => "DT_INT32",
            DataType::DtUint8 => "DT_UINT8",
            DataType::DtInt16 => "DT_INT16",
            DataType::DtInt8 => "DT_INT8",
            DataType::DtString => "DT_STRING",
            DataType::DtComplex64 => "DT_COMPLEX64",
            DataType::DtInt64 => "DT_INT64",
            DataType::DtBool => "DT_BOOL",
            DataType::DtQint8 => "DT_QINT8",
            DataType::DtQuint8 => "DT_QUINT8",
            DataType::DtQint32 => "DT_QINT32",
            DataType::DtBfloat16 => "DT_BFLOAT16",
            DataType::DtQint16 => "DT_QINT16",
            DataType::DtQuint16 => "DT_QUINT16",
            DataType::DtUint16 => "DT_UINT16",
            DataType::DtComplex128 => "DT_COMPLEX128",
            DataType::DtHalf => "DT_HALF",
            DataType::DtResource => "DT_RESOURCE",
            DataType::DtVariant => "DT_VARIANT",
            DataType::DtUint32 => "DT_UINT32",
            DataType::DtUint64 => "DT_UINT64",
            DataType::DtFloatRef => "DT_FLOAT_REF",
            DataType::DtDoubleRef => "DT_DOUBLE_REF",
            DataType::DtInt32Ref => "DT_INT32_REF",
            DataType::DtUint8Ref => "DT_UINT8_REF",
            DataType::DtInt16Ref => "DT_INT16_REF",
            DataType::DtInt8Ref => "DT_INT8_REF",
            DataType::DtStringRef => "DT_STRING_REF",
            DataType::DtComplex64Ref => "DT_COMPLEX64_REF",
            DataType::DtInt64Ref => "DT_INT64_REF",
            DataType::DtBoolRef => "DT_BOOL_REF",
            DataType::DtQint8Ref => "DT_QINT8_REF",
            DataType::DtQuint8Ref => "DT_QUINT8_REF",
            DataType::DtQint32Ref => "DT_QINT32_REF",
            DataType::DtBfloat16Ref => "DT_BFLOAT16_REF",
            DataType::DtQint16Ref => "DT_QINT16_REF",
            DataType::DtQuint16Ref => "DT_QUINT16_REF",
            DataType::DtUint16Ref => "DT_UINT16_REF",
            DataType::DtComplex128Ref => "DT_COMPLEX128_REF",
            DataType::DtHalfRef => "DT_HALF_REF",
            DataType::DtResourceRef => "DT_RESOURCE_REF",
            DataType::DtVariantRef => "DT_VARIANT_REF",
            DataType::DtUint32Ref => "DT_UINT32_REF",
            DataType::DtUint64Ref => "DT_UINT64_REF",
        }
    }
}
/// Protocol buffer representing a tensor.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TensorProto {
    #[prost(enumeration="DataType", tag="1")]
    pub dtype: i32,
    /// Shape of the tensor.  TODO(touts): sort out the 0-rank issues.
    #[prost(message, optional, tag="2")]
    pub tensor_shape: ::core::option::Option<TensorShapeProto>,
    // Only one of the representations below is set, one of "tensor_contents" and
    // the "xxx_val" attributes.  We are not using oneof because as oneofs cannot
    // contain repeated fields it would require another extra set of messages.

    /// Version number.
    ///
    /// In version 0, if the "repeated xxx" representations contain only one
    /// element, that element is repeated to fill the shape.  This makes it easy
    /// to represent a constant Tensor with a single value.
    #[prost(int32, tag="3")]
    pub version_number: i32,
    /// Serialized raw tensor content from either Tensor::AsProtoTensorContent or
    /// memcpy in tensorflow::grpc::EncodeTensorToByteBuffer. This representation
    /// can be used for all tensor types. The purpose of this representation is to
    /// reduce serialization overhead during RPC call by avoiding serialization of
    /// many repeated small items.
    #[prost(bytes="vec", tag="4")]
    pub tensor_content: ::prost::alloc::vec::Vec<u8>,
    // Type specific representations that make it easy to create tensor protos in
    // all languages.  Only the representation corresponding to "dtype" can
    // be set.  The values hold the flattened representation of the tensor in
    // row major order.

    /// DT_HALF, DT_BFLOAT16. Note that since protobuf has no int16 type, we'll
    /// have some pointless zero padding for each value here.
    #[prost(int32, repeated, tag="13")]
    pub half_val: ::prost::alloc::vec::Vec<i32>,
    /// DT_FLOAT.
    #[prost(float, repeated, tag="5")]
    pub float_val: ::prost::alloc::vec::Vec<f32>,
    /// DT_DOUBLE.
    #[prost(double, repeated, tag="6")]
    pub double_val: ::prost::alloc::vec::Vec<f64>,
    /// DT_INT32, DT_INT16, DT_INT8, DT_UINT8.
    #[prost(int32, repeated, tag="7")]
    pub int_val: ::prost::alloc::vec::Vec<i32>,
    /// DT_STRING
    #[prost(bytes="vec", repeated, tag="8")]
    pub string_val: ::prost::alloc::vec::Vec<::prost::alloc::vec::Vec<u8>>,
    /// DT_COMPLEX64. scomplex_val(2*i) and scomplex_val(2*i+1) are real
    /// and imaginary parts of i-th single precision complex.
    #[prost(float, repeated, tag="9")]
    pub scomplex_val: ::prost::alloc::vec::Vec<f32>,
    /// DT_INT64
    #[prost(int64, repeated, tag="10")]
    pub int64_val: ::prost::alloc::vec::Vec<i64>,
    /// DT_BOOL
    #[prost(bool, repeated, tag="11")]
    pub bool_val: ::prost::alloc::vec::Vec<bool>,
    /// DT_COMPLEX128. dcomplex_val(2*i) and dcomplex_val(2*i+1) are real
    /// and imaginary parts of i-th double precision complex.
    #[prost(double, repeated, tag="12")]
    pub dcomplex_val: ::prost::alloc::vec::Vec<f64>,
    /// DT_RESOURCE
    #[prost(message, repeated, tag="14")]
    pub resource_handle_val: ::prost::alloc::vec::Vec<ResourceHandleProto>,
    /// DT_VARIANT
    #[prost(message, repeated, tag="15")]
    pub variant_val: ::prost::alloc::vec::Vec<VariantTensorDataProto>,
    /// DT_UINT32
    #[prost(uint32, repeated, tag="16")]
    pub uint32_val: ::prost::alloc::vec::Vec<u32>,
    /// DT_UINT64
    #[prost(uint64, repeated, tag="17")]
    pub uint64_val: ::prost::alloc::vec::Vec<u64>,
}
/// Protocol buffer representing the serialization format of DT_VARIANT tensors.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct VariantTensorDataProto {
    /// Name of the type of objects being serialized.
    #[prost(string, tag="1")]
    pub type_name: ::prost::alloc::string::String,
    /// Portions of the object that are not Tensors.
    #[prost(bytes="vec", tag="2")]
    pub metadata: ::prost::alloc::vec::Vec<u8>,
    /// Tensors contained within objects being serialized.
    #[prost(message, repeated, tag="3")]
    pub tensors: ::prost::alloc::vec::Vec<TensorProto>,
}
/// Protocol buffer representing the value for an attr used to configure an Op.
/// Comment indicates the corresponding attr type.  Only the field matching the
/// attr type may be filled.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AttrValue {
    #[prost(oneof="attr_value::Value", tags="2, 3, 4, 5, 6, 7, 8, 1, 10, 9")]
    pub value: ::core::option::Option<attr_value::Value>,
}
/// Nested message and enum types in `AttrValue`.
pub mod attr_value {
    /// LINT.IfChange
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct ListValue {
        /// "list(string)"
        #[prost(bytes="vec", repeated, tag="2")]
        pub s: ::prost::alloc::vec::Vec<::prost::alloc::vec::Vec<u8>>,
        /// "list(int)"
        #[prost(int64, repeated, tag="3")]
        pub i: ::prost::alloc::vec::Vec<i64>,
        /// "list(float)"
        #[prost(float, repeated, tag="4")]
        pub f: ::prost::alloc::vec::Vec<f32>,
        /// "list(bool)"
        #[prost(bool, repeated, tag="5")]
        pub b: ::prost::alloc::vec::Vec<bool>,
        /// "list(type)"
        #[prost(enumeration="super::DataType", repeated, tag="6")]
        pub r#type: ::prost::alloc::vec::Vec<i32>,
        /// "list(shape)"
        #[prost(message, repeated, tag="7")]
        pub shape: ::prost::alloc::vec::Vec<super::TensorShapeProto>,
        /// "list(tensor)"
        #[prost(message, repeated, tag="8")]
        pub tensor: ::prost::alloc::vec::Vec<super::TensorProto>,
        /// "list(attr)"
        #[prost(message, repeated, tag="9")]
        pub func: ::prost::alloc::vec::Vec<super::NameAttrList>,
    }
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Value {
        /// "string"
        #[prost(bytes, tag="2")]
        S(::prost::alloc::vec::Vec<u8>),
        /// "int"
        #[prost(int64, tag="3")]
        I(i64),
        /// "float"
        #[prost(float, tag="4")]
        F(f32),
        /// "bool"
        #[prost(bool, tag="5")]
        B(bool),
        /// "type"
        #[prost(enumeration="super::DataType", tag="6")]
        Type(i32),
        /// "shape"
        #[prost(message, tag="7")]
        Shape(super::TensorShapeProto),
        /// "tensor"
        #[prost(message, tag="8")]
        Tensor(super::TensorProto),
        /// any "list(...)"
        #[prost(message, tag="1")]
        List(ListValue),
        /// "func" represents a function. func.name is a function's name or
        /// a primitive op's name. func.attr.first is the name of an attr
        /// defined for that function. func.attr.second is the value for
        /// that attr in the instantiation.
        #[prost(message, tag="10")]
        Func(super::NameAttrList),
        /// This is a placeholder only used in nodes defined inside a
        /// function.  It indicates the attr value will be supplied when
        /// the function is instantiated.  For example, let us suppose a
        /// node "N" in function "FN". "N" has an attr "A" with value
        /// placeholder = "foo". When FN is instantiated with attr "foo"
        /// set to "bar", the instantiated node N's attr A will have been
        /// given the value "bar".
        #[prost(string, tag="9")]
        Placeholder(::prost::alloc::string::String),
    }
}
/// A list of attr names and their values. The whole list is attached
/// with a string name.  E.g., MatMul\[T=float\].
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct NameAttrList {
    #[prost(string, tag="1")]
    pub name: ::prost::alloc::string::String,
    #[prost(map="string, message", tag="2")]
    pub attr: ::std::collections::HashMap<::prost::alloc::string::String, AttrValue>,
}
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct NodeDef {
    /// The name given to this operator. Used for naming inputs,
    /// logging, visualization, etc.  Unique within a single GraphDef.
    /// Must match the regexp "\[A-Za-z0-9.][A-Za-z0-9_./\]*".
    #[prost(string, tag="1")]
    pub name: ::prost::alloc::string::String,
    /// The operation name.  There may be custom parameters in attrs.
    /// Op names starting with an underscore are reserved for internal use.
    #[prost(string, tag="2")]
    pub op: ::prost::alloc::string::String,
    /// Each input is "node:src_output" with "node" being a string name and
    /// "src_output" indicating which output tensor to use from "node". If
    /// "src_output" is 0 the ":0" suffix can be omitted.  Regular inputs
    /// may optionally be followed by control inputs that have the format
    /// "^node".
    #[prost(string, repeated, tag="3")]
    pub input: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
    /// A (possibly partial) specification for the device on which this
    /// node should be placed.
    /// The expected syntax for this string is as follows:
    ///
    /// DEVICE_SPEC ::= PARTIAL_SPEC
    ///
    /// PARTIAL_SPEC ::= ("/" CONSTRAINT) *
    /// CONSTRAINT ::= ("job:" JOB_NAME)
    ///               | ("replica:" \[1-9][0-9\]*)
    ///               | ("task:" \[1-9][0-9\]*)
    ///               | ("device:" \[A-Za-z\]* ":" (\[1-9][0-9\]* | "*") )
    ///
    /// Valid values for this string include:
    /// * "/job:worker/replica:0/task:1/device:GPU:3"  (full specification)
    /// * "/job:worker/device:GPU:3"                   (partial specification)
    /// * ""                                    (no specification)
    ///
    /// If the constraints do not resolve to a single device (or if this
    /// field is empty or not present), the runtime will attempt to
    /// choose a device automatically.
    #[prost(string, tag="4")]
    pub device: ::prost::alloc::string::String,
    /// Operation-specific graph-construction-time configuration.
    /// Note that this should include all attrs defined in the
    /// corresponding OpDef, including those with a value matching
    /// the default -- this allows the default to change and makes
    /// NodeDefs easier to interpret on their own.  However, if
    /// an attr with a default is not specified in this list, the
    /// default will be used.
    /// The "names" (keys) must match the regexp "\[a-z][a-z0-9_\]+" (and
    /// one of the names from the corresponding OpDef's attr field).
    /// The values must have a type matching the corresponding OpDef
    /// attr's type field.
    /// TODO(josh11b): Add some examples here showing best practices.
    #[prost(map="string, message", tag="5")]
    pub attr: ::std::collections::HashMap<::prost::alloc::string::String, AttrValue>,
}
/// Defines an operation. A NodeDef in a GraphDef specifies an Op by
/// using the "op" field which should match the name of a OpDef.
/// LINT.IfChange
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct OpDef {
    /// Op names starting with an underscore are reserved for internal use.
    /// Names should be CamelCase and match the regexp "\[A-Z][a-zA-Z0-9_\]*".
    #[prost(string, tag="1")]
    pub name: ::prost::alloc::string::String,
    /// Description of the input(s).
    #[prost(message, repeated, tag="2")]
    pub input_arg: ::prost::alloc::vec::Vec<op_def::ArgDef>,
    /// Description of the output(s).
    #[prost(message, repeated, tag="3")]
    pub output_arg: ::prost::alloc::vec::Vec<op_def::ArgDef>,
    #[prost(message, repeated, tag="4")]
    pub attr: ::prost::alloc::vec::Vec<op_def::AttrDef>,
    /// Optional deprecation based on GraphDef versions.
    #[prost(message, optional, tag="8")]
    pub deprecation: ::core::option::Option<OpDeprecation>,
    /// One-line human-readable description of what the Op does.
    #[prost(string, tag="5")]
    pub summary: ::prost::alloc::string::String,
    /// Additional, longer human-readable description of what the Op does.
    #[prost(string, tag="6")]
    pub description: ::prost::alloc::string::String,
    // -------------------------------------------------------------------------
    // Which optimizations this operation can participate in.

    /// True if the operation is commutative ("op(a,b) == op(b,a)" for all inputs)
    #[prost(bool, tag="18")]
    pub is_commutative: bool,
    /// If is_aggregate is true, then this operation accepts N >= 2
    /// inputs and produces 1 output all of the same type.  Should be
    /// associative and commutative, and produce output with the same
    /// shape as the input.  The optimizer may replace an aggregate op
    /// taking input from multiple devices with a tree of aggregate ops
    /// that aggregate locally within each device (and possibly within
    /// groups of nearby devices) before communicating.
    /// TODO(josh11b): Implement that optimization.
    ///
    /// for things like add
    #[prost(bool, tag="16")]
    pub is_aggregate: bool,
    // Other optimizations go here, like
    //    can_alias_input, rewrite_when_output_unused, partitioning_strategy, etc.

    // -------------------------------------------------------------------------
    // Optimization constraints.

    /// Ops are marked as stateful if their behavior depends on some state beyond
    /// their input tensors (e.g. variable reading op) or if they have
    /// a side-effect (e.g. printing or asserting ops). Equivalently, stateless ops
    /// must always produce the same output for the same input and have
    /// no side-effects.
    ///
    /// By default Ops may be moved between devices.  Stateful ops should
    /// either not be moved, or should only be moved if that state can also
    /// be moved (e.g. via some sort of save / restore).
    /// Stateful ops are guaranteed to never be optimized away by Common
    /// Subexpression Elimination (CSE).
    ///
    /// for things like variables, queue
    #[prost(bool, tag="17")]
    pub is_stateful: bool,
    // -------------------------------------------------------------------------
    // Non-standard options.

    /// By default, all inputs to an Op must be initialized Tensors.  Ops
    /// that may initialize tensors for the first time should set this
    /// field to true, to allow the Op to take an uninitialized Tensor as
    /// input.
    ///
    /// for Assign, etc.
    #[prost(bool, tag="19")]
    pub allows_uninitialized_input: bool,
}
/// Nested message and enum types in `OpDef`.
pub mod op_def {
    /// For describing inputs and outputs.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct ArgDef {
        /// Name for the input/output.  Should match the regexp "\[a-z][a-z0-9_\]*".
        #[prost(string, tag="1")]
        pub name: ::prost::alloc::string::String,
        /// Human readable description.
        #[prost(string, tag="2")]
        pub description: ::prost::alloc::string::String,
        /// Describes the type of one or more tensors that are accepted/produced
        /// by this input/output arg.  The only legal combinations are:
        /// * For a single tensor: either the "type" field is set or the
        ///    "type_attr" field is set to the name of an attr with type "type".
        /// * For a sequence of tensors with the same type: the "number_attr"
        ///    field will be set to the name of an attr with type "int", and
        ///    either the "type" or "type_attr" field will be set as for
        ///    single tensors.
        /// * For a sequence of tensors, the "type_list_attr" field will be set
        ///    to the name of an attr with type "list(type)".
        #[prost(enumeration="super::DataType", tag="3")]
        pub r#type: i32,
        /// if specified, attr must have type "type"
        #[prost(string, tag="4")]
        pub type_attr: ::prost::alloc::string::String,
        /// if specified, attr must have type "int"
        #[prost(string, tag="5")]
        pub number_attr: ::prost::alloc::string::String,
        /// If specified, attr must have type "list(type)", and none of
        /// type, type_attr, and number_attr may be specified.
        #[prost(string, tag="6")]
        pub type_list_attr: ::prost::alloc::string::String,
        /// For inputs: if true, the inputs are required to be refs.
        ///    By default, inputs can be either refs or non-refs.
        /// For outputs: if true, outputs are refs, otherwise they are not.
        #[prost(bool, tag="16")]
        pub is_ref: bool,
    }
    /// Description of the graph-construction-time configuration of this
    /// Op.  That is to say, this describes the attr fields that will
    /// be specified in the NodeDef.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct AttrDef {
        /// A descriptive name for the argument.  May be used, e.g. by the
        /// Python client, as a keyword argument name, and so should match
        /// the regexp "\[a-z][a-z0-9_\]+".
        #[prost(string, tag="1")]
        pub name: ::prost::alloc::string::String,
        /// One of the type names from attr_value.proto ("string", "list(string)",
        /// "int", etc.).
        #[prost(string, tag="2")]
        pub r#type: ::prost::alloc::string::String,
        /// A reasonable default for this attribute if the user does not supply
        /// a value.  If not specified, the user must supply a value.
        #[prost(message, optional, tag="3")]
        pub default_value: ::core::option::Option<super::AttrValue>,
        /// Human-readable description.
        #[prost(string, tag="4")]
        pub description: ::prost::alloc::string::String,
        // TODO(josh11b): bool is_optional?

        // --- Constraints ---
        // These constraints are only in effect if specified.  Default is no
        // constraints.

        /// For type == "int", this is a minimum value.  For "list(___)"
        /// types, this is the minimum length.
        #[prost(bool, tag="5")]
        pub has_minimum: bool,
        #[prost(int64, tag="6")]
        pub minimum: i64,
        /// The set of allowed values.  Has type that is the "list" version
        /// of the "type" field above (uses the "list" field of AttrValue).
        /// If type == "type" or "list(type)" above, then the "type" field
        /// of "allowed_values.list" has the set of allowed DataTypes.
        /// If type == "string" or "list(string)", then the "s" field of
        /// "allowed_values.list" has the set of allowed strings.
        #[prost(message, optional, tag="7")]
        pub allowed_values: ::core::option::Option<super::AttrValue>,
    }
}
/// Information about version-dependent deprecation of an op
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct OpDeprecation {
    /// First GraphDef version at which the op is disallowed.
    #[prost(int32, tag="1")]
    pub version: i32,
    /// Explanation of why it was deprecated and what to use instead.
    #[prost(string, tag="2")]
    pub explanation: ::prost::alloc::string::String,
}
/// A collection of OpDefs
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct OpList {
    #[prost(message, repeated, tag="1")]
    pub op: ::prost::alloc::vec::Vec<OpDef>,
}
/// A library is a set of named functions.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct FunctionDefLibrary {
    #[prost(message, repeated, tag="1")]
    pub function: ::prost::alloc::vec::Vec<FunctionDef>,
    #[prost(message, repeated, tag="2")]
    pub gradient: ::prost::alloc::vec::Vec<GradientDef>,
}
/// A function can be instantiated when the runtime can bind every attr
/// with a value. When a GraphDef has a call to a function, it must
/// have binding for every attr defined in the signature.
///
/// TODO(zhifengc):
///    * device spec, etc.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct FunctionDef {
    /// The definition of the function's name, arguments, return values,
    /// attrs etc.
    #[prost(message, optional, tag="1")]
    pub signature: ::core::option::Option<OpDef>,
    /// Attributes specific to this function definition.
    #[prost(map="string, message", tag="5")]
    pub attr: ::std::collections::HashMap<::prost::alloc::string::String, AttrValue>,
    // NOTE: field id 2 deleted on Jan 11, 2016, GraphDef version 21.

    // In both of the following fields, there is the need to specify an
    // output that is used as either the input to another node (in
    // `node_def`) or as a return value of the function (in `ret`).
    // Unlike the NodeDefs in GraphDef, we need to be able to specify a
    // list in some cases (instead of just single outputs).  Also, we
    // need to be able to deal with lists of unknown length (so the
    // output index may not be known at function definition time).  So
    // we use the following format instead:
    // * "fun_in" where "fun_in" is the name of a function input arg in
    //    the `signature` field above.  This represents that input, whether
    //    it is a single tensor or a list.
    // * "fun_in:0" gives the first element of a function input arg (a
    //    non-list input is considered a list of length 1 for these
    //    purposes).
    // * "node:out" where "node" is the name of a node in `node_def` and
    //    "out" is the name one of its op's output arguments (the name
    //    comes from the OpDef of the node's op). This represents that
    //    node's output, whether it is a single tensor or a list.
    //    Note: We enforce that an op's output arguments are never
    //    renamed in the backwards-compatibility test.
    // * "node:out:0" gives the first element of a node output arg (a
    //    non-list output is considered a list of length 1 for these
    //    purposes).
    //
    // NOT CURRENTLY SUPPORTED (but may be in the future):
    // * "node:out:-1" gives last element in a node output list
    // * "node:out:1:" gives a list with all but the first element in a
    //    node output list
    // * "node:out::-1" gives a list with all but the last element in a
    //    node output list

    // The body of the function.  Unlike the NodeDefs in a GraphDef, attrs
    // may have values of type `placeholder` and the `input` field uses
    // the "output" format above.

    /// By convention, "op" in node_def is resolved by consulting with a
    /// user-defined library first. If not resolved, "func" is assumed to
    /// be a builtin op.
    #[prost(message, repeated, tag="3")]
    pub node_def: ::prost::alloc::vec::Vec<NodeDef>,
    /// A mapping from the output arg names from `signature` to the
    /// outputs from `node_def` that should be returned by the function.
    #[prost(map="string, string", tag="4")]
    pub ret: ::std::collections::HashMap<::prost::alloc::string::String, ::prost::alloc::string::String>,
}
/// GradientDef defines the gradient function of a function defined in
/// a function library.
///
/// A gradient function g (specified by gradient_func) for a function f
/// (specified by function_name) must follow the following:
///
/// The function 'f' must be a numerical function which takes N inputs
/// and produces M outputs. Its gradient function 'g', which is a
/// function taking N + M inputs and produces N outputs.
///
/// I.e. if we have
///     (y1, y2, ..., y_M) = f(x1, x2, ..., x_N),
/// then, g is
///     (dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N,
///                                       dL/dy1, dL/dy2, ..., dL/dy_M),
/// where L is a scalar-value function of (x1, x2, ..., xN) (e.g., the
/// loss function). dL/dx_i is the partial derivative of L with respect
/// to x_i.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GradientDef {
    /// The function name.
    #[prost(string, tag="1")]
    pub function_name: ::prost::alloc::string::String,
    /// The gradient function's name.
    #[prost(string, tag="2")]
    pub gradient_func: ::prost::alloc::string::String,
}
/// Version information for a piece of serialized data
///
/// There are different types of versions for each type of data
/// (GraphDef, etc.), but they all have the same common shape
/// described here.
///
/// Each consumer has "consumer" and "min_producer" versions (specified
/// elsewhere).  A consumer is allowed to consume this data if
///
///    producer >= min_producer
///    consumer >= min_consumer
///    consumer not in bad_consumers
///
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct VersionDef {
    /// The version of the code that produced this data.
    #[prost(int32, tag="1")]
    pub producer: i32,
    /// Any consumer below this version is not allowed to consume this data.
    #[prost(int32, tag="2")]
    pub min_consumer: i32,
    /// Specific consumer versions which are disallowed (e.g. due to bugs).
    #[prost(int32, repeated, tag="3")]
    pub bad_consumers: ::prost::alloc::vec::Vec<i32>,
}
/// Represents the graph of operations
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct GraphDef {
    #[prost(message, repeated, tag="1")]
    pub node: ::prost::alloc::vec::Vec<NodeDef>,
    /// Compatibility versions of the graph.  See core/public/version.h for version
    /// history.  The GraphDef version is distinct from the TensorFlow version, and
    /// each release of TensorFlow will support a range of GraphDef versions.
    #[prost(message, optional, tag="4")]
    pub versions: ::core::option::Option<VersionDef>,
    /// Deprecated single version field; use versions above instead.  Since all
    /// GraphDef changes before "versions" was introduced were forward
    /// compatible, this field is entirely ignored.
    #[deprecated]
    #[prost(int32, tag="3")]
    pub version: i32,
    /// EXPERIMENTAL. DO NOT USE OR DEPEND ON THIS YET.
    ///
    /// "library" provides user-defined functions.
    ///
    /// Naming:
    ///    * library.function.name are in a flat namespace.
    ///      NOTE: We may need to change it to be hierarchical to support
    ///      different orgs. E.g.,
    ///      { "/google/nn", { ... }},
    ///      { "/google/vision", { ... }}
    ///      { "/org_foo/module_bar", { ... }}
    ///      map<string, FunctionDefLib> named_lib;
    ///    * If node\[i\].op is the name of one function in "library",
    ///      node\[i\] is deemed as a function call. Otherwise, node\[i\].op
    ///      must be a primitive operation supported by the runtime.
    ///
    ///
    /// Function call semantics:
    ///
    ///    * The callee may start execution as soon as some of its inputs
    ///      are ready. The caller may want to use Tuple() mechanism to
    ///      ensure all inputs are ready in the same time.
    ///
    ///    * The consumer of return values may start executing as soon as
    ///      the return values the consumer depends on are ready.  The
    ///      consumer may want to use Tuple() mechanism to ensure the
    ///      consumer does not start until all return values of the callee
    ///      function are ready.
    #[prost(message, optional, tag="2")]
    pub library: ::core::option::Option<FunctionDefLibrary>,
}
/// Protocol buffer representing a Variable.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct VariableDef {
    /// Name of the variable tensor.
    #[prost(string, tag="1")]
    pub variable_name: ::prost::alloc::string::String,
    /// Name of the tensor holding the variable's initial value.
    #[prost(string, tag="6")]
    pub initial_value_name: ::prost::alloc::string::String,
    /// Name of the initializer op.
    #[prost(string, tag="2")]
    pub initializer_name: ::prost::alloc::string::String,
    /// Name of the snapshot tensor.
    #[prost(string, tag="3")]
    pub snapshot_name: ::prost::alloc::string::String,
    /// Support for saving variables as slices of a larger variable.
    #[prost(message, optional, tag="4")]
    pub save_slice_info_def: ::core::option::Option<SaveSliceInfoDef>,
    /// Whether to represent this as a ResourceVariable.
    #[prost(bool, tag="5")]
    pub is_resource: bool,
    /// Whether this variable should be trained.
    #[prost(bool, tag="7")]
    pub trainable: bool,
    /// Indicates when a distributed variable will be synced.
    #[prost(enumeration="VariableSynchronization", tag="8")]
    pub synchronization: i32,
    /// Indicates how a distributed variable will be aggregated.
    #[prost(enumeration="VariableAggregation", tag="9")]
    pub aggregation: i32,
}
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct SaveSliceInfoDef {
    /// Name of the full variable of which this is a slice.
    #[prost(string, tag="1")]
    pub full_name: ::prost::alloc::string::String,
    /// Shape of the full variable.
    #[prost(int64, repeated, tag="2")]
    pub full_shape: ::prost::alloc::vec::Vec<i64>,
    /// Offset of this variable into the full variable.
    #[prost(int64, repeated, tag="3")]
    pub var_offset: ::prost::alloc::vec::Vec<i64>,
    /// Shape of this variable.
    #[prost(int64, repeated, tag="4")]
    pub var_shape: ::prost::alloc::vec::Vec<i64>,
}
/// Indicates when a distributed variable will be synced.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
#[repr(i32)]
pub enum VariableSynchronization {
    /// `AUTO`: Indicates that the synchronization will be determined by the
    /// current `DistributionStrategy` (eg. With `MirroredStrategy` this would be
    /// `ON_WRITE`).
    Auto = 0,
    /// `NONE`: Indicates that there will only be one copy of the variable, so
    /// there is no need to sync.
    None = 1,
    /// `ON_WRITE`: Indicates that the variable will be updated across devices
    /// every time it is written.
    OnWrite = 2,
    /// `ON_READ`: Indicates that the variable will be aggregated across devices
    /// when it is read (eg. when checkpointing or when evaluating an op that uses
    /// the variable).
    OnRead = 3,
}
impl VariableSynchronization {
    /// String value of the enum field names used in the ProtoBuf definition.
    ///
    /// The values are not transformed in any way and thus are considered stable
    /// (if the ProtoBuf definition does not change) and safe for programmatic use.
    pub fn as_str_name(&self) -> &'static str {
        match self {
            VariableSynchronization::Auto => "VARIABLE_SYNCHRONIZATION_AUTO",
            VariableSynchronization::None => "VARIABLE_SYNCHRONIZATION_NONE",
            VariableSynchronization::OnWrite => "VARIABLE_SYNCHRONIZATION_ON_WRITE",
            VariableSynchronization::OnRead => "VARIABLE_SYNCHRONIZATION_ON_READ",
        }
    }
}
/// Indicates how a distributed variable will be aggregated.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
#[repr(i32)]
pub enum VariableAggregation {
    /// `NONE`: This is the default, giving an error if you use a
    /// variable-update operation with multiple replicas.
    None = 0,
    /// `SUM`: Add the updates across replicas.
    Sum = 1,
    /// `MEAN`: Take the arithmetic mean ("average") of the updates across
    /// replicas.
    Mean = 2,
    /// `ONLY_FIRST_REPLICA`: This is for when every replica is performing the same
    /// update, but we only want to perform the update once. Used, e.g., for the
    /// global step counter.
    OnlyFirstReplica = 3,
}
impl VariableAggregation {
    /// String value of the enum field names used in the ProtoBuf definition.
    ///
    /// The values are not transformed in any way and thus are considered stable
    /// (if the ProtoBuf definition does not change) and safe for programmatic use.
    pub fn as_str_name(&self) -> &'static str {
        match self {
            VariableAggregation::None => "VARIABLE_AGGREGATION_NONE",
            VariableAggregation::Sum => "VARIABLE_AGGREGATION_SUM",
            VariableAggregation::Mean => "VARIABLE_AGGREGATION_MEAN",
            VariableAggregation::OnlyFirstReplica => "VARIABLE_AGGREGATION_ONLY_FIRST_REPLICA",
        }
    }
}
// A TensorBundle addition which saves extra information about the objects which
// own variables, allowing for more robust checkpoint loading into modified
// programs.

#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TrackableObjectGraph {
    #[prost(message, repeated, tag="1")]
    pub nodes: ::prost::alloc::vec::Vec<trackable_object_graph::TrackableObject>,
}
/// Nested message and enum types in `TrackableObjectGraph`.
pub mod trackable_object_graph {
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct TrackableObject {
        /// Objects which this object depends on.
        #[prost(message, repeated, tag="1")]
        pub children: ::prost::alloc::vec::Vec<trackable_object::ObjectReference>,
        /// Serialized data specific to this object.
        #[prost(message, repeated, tag="2")]
        pub attributes: ::prost::alloc::vec::Vec<trackable_object::SerializedTensor>,
        /// Slot variables owned by this object.
        #[prost(message, repeated, tag="3")]
        pub slot_variables: ::prost::alloc::vec::Vec<trackable_object::SlotVariableReference>,
    }
    /// Nested message and enum types in `TrackableObject`.
    pub mod trackable_object {
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct ObjectReference {
            /// An index into `TrackableObjectGraph.nodes`, indicating the object
            /// being referenced.
            #[prost(int32, tag="1")]
            pub node_id: i32,
            /// A user-provided name for the edge.
            #[prost(string, tag="2")]
            pub local_name: ::prost::alloc::string::String,
        }
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct SerializedTensor {
            /// A name for the Tensor. Simple variables have only one
            /// `SerializedTensor` named "VARIABLE_VALUE" by convention. This value may
            /// be restored on object creation as an optimization.
            #[prost(string, tag="1")]
            pub name: ::prost::alloc::string::String,
            /// The full name of the variable/tensor, if applicable. Used to allow
            /// name-based loading of checkpoints which were saved using an
            /// object-based API. Should match the checkpoint key which would have been
            /// assigned by tf.train.Saver.
            #[prost(string, tag="2")]
            pub full_name: ::prost::alloc::string::String,
            /// The generated name of the Tensor in the checkpoint.
            #[prost(string, tag="3")]
            pub checkpoint_key: ::prost::alloc::string::String,
            /// Whether checkpoints should be considered as matching even without this
            /// value restored. Used for non-critical values which don't affect the
            /// TensorFlow graph, such as layer configurations.
            #[prost(bool, tag="4")]
            pub optional_restore: bool,
        }
        #[derive(Clone, PartialEq, ::prost::Message)]
        pub struct SlotVariableReference {
            /// An index into `TrackableObjectGraph.nodes`, indicating the
            /// variable object this slot was created for.
            #[prost(int32, tag="1")]
            pub original_variable_node_id: i32,
            /// The name of the slot (e.g. "m"/"v").
            #[prost(string, tag="2")]
            pub slot_name: ::prost::alloc::string::String,
            /// An index into `TrackableObjectGraph.nodes`, indicating the
            /// `Object` with the value of the slot variable.
            #[prost(int32, tag="3")]
            pub slot_variable_node_id: i32,
        }
    }
}
/// `StructuredValue` represents a dynamically typed value representing various
/// data structures that are inspired by Python data structures typically used in
/// TensorFlow functions as inputs and outputs.
///
/// For example when saving a Layer there may be a `training` argument. If the
/// user passes a boolean True/False, that switches between two concrete
/// TensorFlow functions. In order to switch between them in the same way after
/// loading the SavedModel, we need to represent "True" and "False".
///
/// A more advanced example might be a function which takes a list of
/// dictionaries mapping from strings to Tensors. In order to map from
/// user-specified arguments `[{"a": tf.constant(1.)}, {"q": tf.constant(3.)}]`
/// after load to the right saved TensorFlow function, we need to represent the
/// nested structure and the strings, recording that we have a trace for anything
/// matching `[{"a": tf.TensorSpec(None, tf.float32)}, {"q": tf.TensorSpec([],
/// tf.float64)}]` as an example.
///
/// Likewise functions may return nested structures of Tensors, for example
/// returning a dictionary mapping from strings to Tensors. In order for the
/// loaded function to return the same structure we need to serialize it.
///
/// This is an ergonomic aid for working with loaded SavedModels, not a promise
/// to serialize all possible function signatures. For example we do not expect
/// to pickle generic Python objects, and ideally we'd stay language-agnostic.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct StructuredValue {
    /// The kind of value.
    #[prost(oneof="structured_value::Kind", tags="1, 11, 12, 13, 14, 31, 32, 33, 34, 51, 52, 53, 54")]
    pub kind: ::core::option::Option<structured_value::Kind>,
}
/// Nested message and enum types in `StructuredValue`.
pub mod structured_value {
    /// The kind of value.
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Kind {
        /// Represents None.
        #[prost(message, tag="1")]
        NoneValue(super::NoneValue),
        /// Represents a double-precision floating-point value (a Python `float`).
        #[prost(double, tag="11")]
        Float64Value(f64),
        /// Represents a signed integer value, limited to 64 bits.
        /// Larger values from Python's arbitrary-precision integers are unsupported.
        #[prost(sint64, tag="12")]
        Int64Value(i64),
        /// Represents a string of Unicode characters stored in a Python `str`.
        /// In Python 3, this is exactly what type `str` is.
        /// In Python 2, this is the UTF-8 encoding of the characters.
        /// For strings with ASCII characters only (as often used in TensorFlow code)
        /// there is effectively no difference between the language versions.
        /// The obsolescent `unicode` type of Python 2 is not supported here.
        #[prost(string, tag="13")]
        StringValue(::prost::alloc::string::String),
        /// Represents a boolean value.
        #[prost(bool, tag="14")]
        BoolValue(bool),
        /// Represents a TensorShape.
        #[prost(message, tag="31")]
        TensorShapeValue(super::TensorShapeProto),
        /// Represents an enum value for dtype.
        #[prost(enumeration="super::DataType", tag="32")]
        TensorDtypeValue(i32),
        /// Represents a value for tf.TensorSpec.
        #[prost(message, tag="33")]
        TensorSpecValue(super::TensorSpecProto),
        /// Represents a value for tf.TypeSpec.
        #[prost(message, tag="34")]
        TypeSpecValue(::prost::alloc::boxed::Box<super::TypeSpecProto>),
        /// Represents a list of `Value`.
        #[prost(message, tag="51")]
        ListValue(super::ListValue),
        /// Represents a tuple of `Value`.
        #[prost(message, tag="52")]
        TupleValue(super::TupleValue),
        /// Represents a dict `Value`.
        #[prost(message, tag="53")]
        DictValue(super::DictValue),
        /// Represents Python's namedtuple.
        #[prost(message, tag="54")]
        NamedTupleValue(super::NamedTupleValue),
    }
}
/// Represents None.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct NoneValue {
}
/// Represents a Python list.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct ListValue {
    #[prost(message, repeated, tag="1")]
    pub values: ::prost::alloc::vec::Vec<StructuredValue>,
}
/// Represents a Python tuple.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TupleValue {
    #[prost(message, repeated, tag="1")]
    pub values: ::prost::alloc::vec::Vec<StructuredValue>,
}
/// Represents a Python dict keyed by `str`.
/// The comment on Unicode from Value.string_value applies analogously.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct DictValue {
    #[prost(map="string, message", tag="1")]
    pub fields: ::std::collections::HashMap<::prost::alloc::string::String, StructuredValue>,
}
/// Represents a (key, value) pair.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct PairValue {
    #[prost(string, tag="1")]
    pub key: ::prost::alloc::string::String,
    #[prost(message, optional, tag="2")]
    pub value: ::core::option::Option<StructuredValue>,
}
/// Represents Python's namedtuple.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct NamedTupleValue {
    #[prost(string, tag="1")]
    pub name: ::prost::alloc::string::String,
    #[prost(message, repeated, tag="2")]
    pub values: ::prost::alloc::vec::Vec<PairValue>,
}
/// A protobuf to tf.TensorSpec.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TensorSpecProto {
    #[prost(string, tag="1")]
    pub name: ::prost::alloc::string::String,
    #[prost(message, optional, tag="2")]
    pub shape: ::core::option::Option<TensorShapeProto>,
    #[prost(enumeration="DataType", tag="3")]
    pub dtype: i32,
}
/// Represents a tf.TypeSpec
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TypeSpecProto {
    #[prost(enumeration="type_spec_proto::TypeSpecClass", tag="1")]
    pub type_spec_class: i32,
    /// The value returned by TypeSpec._serialize().
    #[prost(message, optional, boxed, tag="2")]
    pub type_state: ::core::option::Option<::prost::alloc::boxed::Box<StructuredValue>>,
    /// This is currently redundant with the type_spec_class enum, and is only
    /// used for error reporting.  In particular, if you use an older binary to
    /// load a newer model, and the model uses a TypeSpecClass that the older
    /// binary doesn't support, then this lets us display a useful error message.
    #[prost(string, tag="3")]
    pub type_spec_class_name: ::prost::alloc::string::String,
}
/// Nested message and enum types in `TypeSpecProto`.
pub mod type_spec_proto {
    #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
    #[repr(i32)]
    pub enum TypeSpecClass {
        Unknown = 0,
        /// tf.SparseTensorSpec
        SparseTensorSpec = 1,
        /// tf.IndexedSlicesSpec
        IndexedSlicesSpec = 2,
        /// tf.RaggedTensorSpec
        RaggedTensorSpec = 3,
        /// tf.TensorArraySpec
        TensorArraySpec = 4,
        /// tf.data.DatasetSpec
        DataDatasetSpec = 5,
        /// IteratorSpec from data/ops/iterator_ops.py
        DataIteratorSpec = 6,
        /// tf.OptionalSpec
        OptionalSpec = 7,
        /// PerReplicaSpec from distribute/values.py
        PerReplicaSpec = 8,
        /// tf.VariableSpec
        VariableSpec = 9,
    }
    impl TypeSpecClass {
        /// String value of the enum field names used in the ProtoBuf definition.
        ///
        /// The values are not transformed in any way and thus are considered stable
        /// (if the ProtoBuf definition does not change) and safe for programmatic use.
        pub fn as_str_name(&self) -> &'static str {
            match self {
                TypeSpecClass::Unknown => "UNKNOWN",
                TypeSpecClass::SparseTensorSpec => "SPARSE_TENSOR_SPEC",
                TypeSpecClass::IndexedSlicesSpec => "INDEXED_SLICES_SPEC",
                TypeSpecClass::RaggedTensorSpec => "RAGGED_TENSOR_SPEC",
                TypeSpecClass::TensorArraySpec => "TENSOR_ARRAY_SPEC",
                TypeSpecClass::DataDatasetSpec => "DATA_DATASET_SPEC",
                TypeSpecClass::DataIteratorSpec => "DATA_ITERATOR_SPEC",
                TypeSpecClass::OptionalSpec => "OPTIONAL_SPEC",
                TypeSpecClass::PerReplicaSpec => "PER_REPLICA_SPEC",
                TypeSpecClass::VariableSpec => "VARIABLE_SPEC",
            }
        }
    }
}
// A SavedObjectGraph is part of object-based SavedModels in TF 2.0. It
// describes the directed graph of Python objects (or equivalent in other
// languages) that make up a model, with nodes\[0\] at the root.

// SavedObjectGraph shares some structure with TrackableObjectGraph, but
// SavedObjectGraph belongs to the MetaGraph and contains pointers to functions
// and type information, while TrackableObjectGraph lives in the checkpoint
// and contains pointers only to variable values.

#[derive(Clone, PartialEq, ::prost::Message)]
pub struct SavedObjectGraph {
    /// Flattened list of objects in the object graph.
    ///
    /// The position of the object in this list indicates its id.
    /// Nodes\[0\] is considered the root node.
    #[prost(message, repeated, tag="1")]
    pub nodes: ::prost::alloc::vec::Vec<SavedObject>,
    /// Information about captures and output structures in concrete functions.
    /// Referenced from SavedBareConcreteFunction and SavedFunction.
    #[prost(map="string, message", tag="2")]
    pub concrete_functions: ::std::collections::HashMap<::prost::alloc::string::String, SavedConcreteFunction>,
}
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct SavedObject {
    /// Objects which this object depends on: named edges in the dependency
    /// graph.
    ///
    /// Note: currently only valid if kind == "user_object".
    #[prost(message, repeated, tag="1")]
    pub children: ::prost::alloc::vec::Vec<trackable_object_graph::trackable_object::ObjectReference>,
    /// Slot variables owned by this object. This describes the three-way
    /// (optimizer, variable, slot variable) relationship; none of the three
    /// depend on the others directly.
    ///
    /// Note: currently only valid if kind == "user_object".
    #[prost(message, repeated, tag="3")]
    pub slot_variables: ::prost::alloc::vec::Vec<trackable_object_graph::trackable_object::SlotVariableReference>,
    #[prost(oneof="saved_object::Kind", tags="4, 5, 6, 7, 8, 9, 10")]
    pub kind: ::core::option::Option<saved_object::Kind>,
}
/// Nested message and enum types in `SavedObject`.
pub mod saved_object {
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Kind {
        #[prost(message, tag="4")]
        UserObject(super::SavedUserObject),
        #[prost(message, tag="5")]
        Asset(super::SavedAsset),
        #[prost(message, tag="6")]
        Function(super::SavedFunction),
        #[prost(message, tag="7")]
        Variable(super::SavedVariable),
        #[prost(message, tag="8")]
        BareConcreteFunction(super::SavedBareConcreteFunction),
        #[prost(message, tag="9")]
        Constant(super::SavedConstant),
        #[prost(message, tag="10")]
        Resource(super::SavedResource),
    }
}
/// A SavedUserObject is an object (in the object-oriented language of the
/// TensorFlow program) of some user- or framework-defined class other than
/// those handled specifically by the other kinds of SavedObjects.
///
/// This object cannot be evaluated as a tensor, and therefore cannot be bound
/// to an input of a function.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct SavedUserObject {
    /// Corresponds to a registration of the type to use in the loading program.
    #[prost(string, tag="1")]
    pub identifier: ::prost::alloc::string::String,
    /// Version information from the producer of this SavedUserObject.
    #[prost(message, optional, tag="2")]
    pub version: ::core::option::Option<VersionDef>,
    /// Initialization-related metadata.
    #[prost(string, tag="3")]
    pub metadata: ::prost::alloc::string::String,
}
/// A SavedAsset points to an asset in the MetaGraph.
///
/// When bound to a function this object evaluates to a tensor with the absolute
/// filename. Users should not depend on a particular part of the filename to
/// remain stable (e.g. basename could be changed).
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct SavedAsset {
    /// Index into `MetaGraphDef.asset_file_def[]` that describes the Asset.
    ///
    /// Only the field `AssetFileDef.filename` is used. Other fields, such as
    /// `AssetFileDef.tensor_info`, MUST be ignored.
    #[prost(int32, tag="1")]
    pub asset_file_def_index: i32,
}
/// A function with multiple signatures, possibly with non-Tensor arguments.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct SavedFunction {
    #[prost(string, repeated, tag="1")]
    pub concrete_functions: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
    #[prost(message, optional, tag="2")]
    pub function_spec: ::core::option::Option<FunctionSpec>,
}
/// Stores low-level information about a concrete function. Referenced in either
/// a SavedFunction or a SavedBareConcreteFunction.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct SavedConcreteFunction {
    /// Bound inputs to the function. The SavedObjects identified by the node ids
    /// given here are appended as extra inputs to the caller-supplied inputs.
    /// The only types of SavedObjects valid here are SavedVariable, SavedResource
    /// and SavedAsset.
    #[prost(int32, repeated, tag="2")]
    pub bound_inputs: ::prost::alloc::vec::Vec<i32>,
    /// Input in canonicalized form that was received to create this concrete
    /// function.
    #[prost(message, optional, tag="3")]
    pub canonicalized_input_signature: ::core::option::Option<StructuredValue>,
    /// Output that was the return value of this function after replacing all
    /// Tensors with TensorSpecs. This can be an arbitrary nested function and will
    /// be used to reconstruct the full structure from pure tensors.
    #[prost(message, optional, tag="4")]
    pub output_signature: ::core::option::Option<StructuredValue>,
}
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct SavedBareConcreteFunction {
    /// Identifies a SavedConcreteFunction.
    #[prost(string, tag="1")]
    pub concrete_function_name: ::prost::alloc::string::String,
    /// A sequence of unique strings, one per Tensor argument.
    #[prost(string, repeated, tag="2")]
    pub argument_keywords: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
    /// The prefix of `argument_keywords` which may be identified by position.
    #[prost(int64, tag="3")]
    pub allowed_positional_arguments: i64,
}
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct SavedConstant {
    /// An Operation name for a ConstantOp in this SavedObjectGraph's MetaGraph.
    #[prost(string, tag="1")]
    pub operation: ::prost::alloc::string::String,
}
/// Represents a Variable that is initialized by loading the contents from the
/// checkpoint.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct SavedVariable {
    #[prost(enumeration="DataType", tag="1")]
    pub dtype: i32,
    #[prost(message, optional, tag="2")]
    pub shape: ::core::option::Option<TensorShapeProto>,
    #[prost(bool, tag="3")]
    pub trainable: bool,
    #[prost(enumeration="VariableSynchronization", tag="4")]
    pub synchronization: i32,
    #[prost(enumeration="VariableAggregation", tag="5")]
    pub aggregation: i32,
    #[prost(string, tag="6")]
    pub name: ::prost::alloc::string::String,
}
/// Represents `FunctionSpec` used in `Function`. This represents a
/// function that has been wrapped as a TensorFlow `Function`.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct FunctionSpec {
    /// Full arg spec from inspect.getfullargspec().
    #[prost(message, optional, tag="1")]
    pub fullargspec: ::core::option::Option<StructuredValue>,
    /// Whether this represents a class method.
    #[prost(bool, tag="2")]
    pub is_method: bool,
    /// The input signature, if specified.
    #[prost(message, optional, tag="5")]
    pub input_signature: ::core::option::Option<StructuredValue>,
}
/// A SavedResource represents a TF object that holds state during its lifetime.
/// An object of this type can have a reference to a:
/// create_resource() and an initialize() function.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct SavedResource {
    /// A device specification indicating a required placement for the resource
    /// creation function, e.g. "CPU". An empty string allows the user to select a
    /// device.
    #[prost(string, tag="1")]
    pub device: ::prost::alloc::string::String,
}
/// Protocol buffer representing the configuration of a Saver.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct SaverDef {
    /// The name of the tensor in which to specify the filename when saving or
    /// restoring a model checkpoint.
    #[prost(string, tag="1")]
    pub filename_tensor_name: ::prost::alloc::string::String,
    /// The operation to run when saving a model checkpoint.
    #[prost(string, tag="2")]
    pub save_tensor_name: ::prost::alloc::string::String,
    /// The operation to run when restoring a model checkpoint.
    #[prost(string, tag="3")]
    pub restore_op_name: ::prost::alloc::string::String,
    /// Maximum number of checkpoints to keep.  If 0, no checkpoints are deleted.
    #[prost(int32, tag="4")]
    pub max_to_keep: i32,
    /// Shard the save files, one per device that has Variable nodes.
    #[prost(bool, tag="5")]
    pub sharded: bool,
    /// How often to keep an additional checkpoint. If not specified, only the last
    /// "max_to_keep" checkpoints are kept; if specified, in addition to keeping
    /// the last "max_to_keep" checkpoints, an additional checkpoint will be kept
    /// for every n hours of training.
    #[prost(float, tag="6")]
    pub keep_checkpoint_every_n_hours: f32,
    #[prost(enumeration="saver_def::CheckpointFormatVersion", tag="7")]
    pub version: i32,
}
/// Nested message and enum types in `SaverDef`.
pub mod saver_def {
    /// A version number that identifies a different on-disk checkpoint format.
    /// Usually, each subclass of BaseSaverBuilder works with a particular
    /// version/format.  However, it is possible that the same builder may be
    /// upgraded to support a newer checkpoint format in the future.
    #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord, ::prost::Enumeration)]
    #[repr(i32)]
    pub enum CheckpointFormatVersion {
        /// Internal legacy format.
        Legacy = 0,
        /// Deprecated format: tf.Saver() which works with tensorflow::table::Table.
        V1 = 1,
        /// Current format: more efficient.
        V2 = 2,
    }
    impl CheckpointFormatVersion {
        /// String value of the enum field names used in the ProtoBuf definition.
        ///
        /// The values are not transformed in any way and thus are considered stable
        /// (if the ProtoBuf definition does not change) and safe for programmatic use.
        pub fn as_str_name(&self) -> &'static str {
            match self {
                CheckpointFormatVersion::Legacy => "LEGACY",
                CheckpointFormatVersion::V1 => "V1",
                CheckpointFormatVersion::V2 => "V2",
            }
        }
    }
}
/// NOTE: This protocol buffer is evolving, and will go through revisions in the
/// coming months.
///
/// Protocol buffer containing the following which are necessary to restart
/// training, run inference. It can be used to serialize/de-serialize memory
/// objects necessary for running computation in a graph when crossing the
/// process boundary. It can be used for long term storage of graphs,
/// cross-language execution of graphs, etc.
///    MetaInfoDef
///    GraphDef
///    SaverDef
///    CollectionDef
///    TensorInfo
///    SignatureDef
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct MetaGraphDef {
    #[prost(message, optional, tag="1")]
    pub meta_info_def: ::core::option::Option<meta_graph_def::MetaInfoDef>,
    /// GraphDef.
    #[prost(message, optional, tag="2")]
    pub graph_def: ::core::option::Option<GraphDef>,
    /// SaverDef.
    #[prost(message, optional, tag="3")]
    pub saver_def: ::core::option::Option<SaverDef>,
    /// collection_def: Map from collection name to collections.
    /// See CollectionDef section for details.
    #[prost(map="string, message", tag="4")]
    pub collection_def: ::std::collections::HashMap<::prost::alloc::string::String, CollectionDef>,
    /// signature_def: Map from user supplied key for a signature to a single
    /// SignatureDef.
    #[prost(map="string, message", tag="5")]
    pub signature_def: ::std::collections::HashMap<::prost::alloc::string::String, SignatureDef>,
    /// Asset file def to be used with the defined graph.
    #[prost(message, repeated, tag="6")]
    pub asset_file_def: ::prost::alloc::vec::Vec<AssetFileDef>,
    /// Extra information about the structure of functions and stateful objects.
    #[prost(message, optional, tag="7")]
    pub object_graph_def: ::core::option::Option<SavedObjectGraph>,
}
/// Nested message and enum types in `MetaGraphDef`.
pub mod meta_graph_def {
    /// Meta information regarding the graph to be exported.  To be used by users
    /// of this protocol buffer to encode information regarding their meta graph.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct MetaInfoDef {
        /// User specified Version string. Can be the name of the model and revision,
        /// steps this model has been trained to, etc.
        #[prost(string, tag="1")]
        pub meta_graph_version: ::prost::alloc::string::String,
        /// A copy of the OpDefs used by the producer of this graph_def.
        /// Descriptions and Ops not used in graph_def are stripped out.
        #[prost(message, optional, tag="2")]
        pub stripped_op_list: ::core::option::Option<super::OpList>,
        /// A serialized protobuf. Can be the time this meta graph is created, or
        /// modified, or name of the model.
        #[prost(message, optional, tag="3")]
        pub any_info: ::core::option::Option<::prost_types::Any>,
        /// User supplied tag(s) on the meta_graph and included graph_def.
        ///
        /// MetaGraphDefs should be tagged with their capabilities or use-cases.
        /// Examples: "train", "serve", "gpu", "tpu", etc.
        /// These tags enable loaders to access the MetaGraph(s) appropriate for a
        /// specific use-case or runtime environment.
        #[prost(string, repeated, tag="4")]
        pub tags: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
        /// The __version__ string of the tensorflow build used to write this graph.
        /// This will be populated by the framework, which will overwrite any user
        /// supplied value.
        #[prost(string, tag="5")]
        pub tensorflow_version: ::prost::alloc::string::String,
        /// The __git_version__ string of the tensorflow build used to write this
        /// graph. This will be populated by the framework, which will overwrite any
        /// user supplied value.
        #[prost(string, tag="6")]
        pub tensorflow_git_version: ::prost::alloc::string::String,
        /// A flag to denote whether default-valued attrs have been stripped from
        /// the nodes in this graph_def.
        #[prost(bool, tag="7")]
        pub stripped_default_attrs: bool,
    }
}
/// CollectionDef should cover most collections.
/// To add a user-defined collection, do one of the following:
/// 1. For simple data types, such as string, int, float:
///       tf.add_to_collection("your_collection_name", your_simple_value)
///     strings will be stored as bytes_list.
///
/// 2. For Protobuf types, there are three ways to add them:
///     1) tf.add_to_collection("your_collection_name",
///          your_proto.SerializeToString())
///
///        collection_def {
///          key: "user_defined_bytes_collection"
///          value {
///            bytes_list {
///              value: "queue_name: \"test_queue\"\n"
///            }
///          }
///        }
///
///   or
///
///     2) tf.add_to_collection("your_collection_name", str(your_proto))
///
///        collection_def {
///          key: "user_defined_string_collection"
///          value {
///           bytes_list {
///              value: "\n\ntest_queue"
///            }
///          }
///        }
///
///   or
///
///     3) any_buf = any_pb2.Any()
///        tf.add_to_collection("your_collection_name",
///          any_buf.Pack(your_proto))
///
///        collection_def {
///          key: "user_defined_any_collection"
///          value {
///            any_list {
///              value {
///                type_url: "type.googleapis.com/tensorflow.QueueRunnerDef"
///                value: "\n\ntest_queue"
///              }
///            }
///          }
///        }
///
/// 3. For Python objects, implement to_proto() and from_proto(), and register
///     them in the following manner:
///     ops.register_proto_function("your_collection_name",
///                                 proto_type,
///                                 to_proto=YourPythonObject.to_proto,
///                                 from_proto=YourPythonObject.from_proto)
///     These functions will be invoked to serialize and de-serialize the
///     collection. For example,
///     ops.register_proto_function(ops.GraphKeys.GLOBAL_VARIABLES,
///                                 proto_type=variable_pb2.VariableDef,
///                                 to_proto=Variable.to_proto,
///                                 from_proto=Variable.from_proto)
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct CollectionDef {
    #[prost(oneof="collection_def::Kind", tags="1, 2, 3, 4, 5")]
    pub kind: ::core::option::Option<collection_def::Kind>,
}
/// Nested message and enum types in `CollectionDef`.
pub mod collection_def {
    /// NodeList is used for collecting nodes in graph. For example
    /// collection_def {
    ///    key: "summaries"
    ///    value {
    ///      node_list {
    ///        value: "input_producer/ScalarSummary:0"
    ///        value: "shuffle_batch/ScalarSummary:0"
    ///        value: "ImageSummary:0"
    ///      }
    ///    }
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct NodeList {
        #[prost(string, repeated, tag="1")]
        pub value: ::prost::alloc::vec::Vec<::prost::alloc::string::String>,
    }
    /// BytesList is used for collecting strings and serialized protobufs. For
    /// example:
    /// collection_def {
    ///    key: "trainable_variables"
    ///    value {
    ///      bytes_list {
    ///        value: "\n\017conv1/weights:0\022\024conv1/weights/Assign
    ///               \032\024conv1/weights/read:0"
    ///        value: "\n\016conv1/biases:0\022\023conv1/biases/Assign\032
    ///               \023conv1/biases/read:0"
    ///      }
    ///    }
    /// }
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct BytesList {
        #[prost(bytes="vec", repeated, tag="1")]
        pub value: ::prost::alloc::vec::Vec<::prost::alloc::vec::Vec<u8>>,
    }
    /// Int64List is used for collecting int, int64 and long values.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct Int64List {
        #[prost(int64, repeated, tag="1")]
        pub value: ::prost::alloc::vec::Vec<i64>,
    }
    /// FloatList is used for collecting float values.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct FloatList {
        #[prost(float, repeated, tag="1")]
        pub value: ::prost::alloc::vec::Vec<f32>,
    }
    /// AnyList is used for collecting Any protos.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct AnyList {
        #[prost(message, repeated, tag="1")]
        pub value: ::prost::alloc::vec::Vec<::prost_types::Any>,
    }
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Kind {
        #[prost(message, tag="1")]
        NodeList(NodeList),
        #[prost(message, tag="2")]
        BytesList(BytesList),
        #[prost(message, tag="3")]
        Int64List(Int64List),
        #[prost(message, tag="4")]
        FloatList(FloatList),
        #[prost(message, tag="5")]
        AnyList(AnyList),
    }
}
/// Information about a Tensor necessary for feeding or retrieval.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct TensorInfo {
    #[prost(enumeration="DataType", tag="2")]
    pub dtype: i32,
    /// The static shape should be recorded here, to the extent that it can
    /// be known in advance.  In the case of a SparseTensor, this field describes
    /// the logical shape of the represented tensor (aka dense_shape).
    #[prost(message, optional, tag="3")]
    pub tensor_shape: ::core::option::Option<TensorShapeProto>,
    #[prost(oneof="tensor_info::Encoding", tags="1, 4, 5")]
    pub encoding: ::core::option::Option<tensor_info::Encoding>,
}
/// Nested message and enum types in `TensorInfo`.
pub mod tensor_info {
    /// For sparse tensors, The COO encoding stores a triple of values, indices,
    /// and shape.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct CooSparse {
        /// The shape of the values Tensor is \[?\].  Its dtype must be the dtype of
        /// the SparseTensor as a whole, given in the enclosing TensorInfo.
        #[prost(string, tag="1")]
        pub values_tensor_name: ::prost::alloc::string::String,
        /// The indices Tensor must have dtype int64 and shape [?, ?].
        #[prost(string, tag="2")]
        pub indices_tensor_name: ::prost::alloc::string::String,
        /// The dynamic logical shape represented by the SparseTensor is recorded in
        /// the Tensor referenced here.  It must have dtype int64 and shape \[?\].
        #[prost(string, tag="3")]
        pub dense_shape_tensor_name: ::prost::alloc::string::String,
    }
    /// Generic encoding for composite tensors.
    #[derive(Clone, PartialEq, ::prost::Message)]
    pub struct CompositeTensor {
        /// The serialized TypeSpec for the composite tensor.
        #[prost(message, optional, tag="1")]
        pub type_spec: ::core::option::Option<super::TypeSpecProto>,
        /// A TensorInfo for each flattened component tensor.
        #[prost(message, repeated, tag="2")]
        pub components: ::prost::alloc::vec::Vec<super::TensorInfo>,
    }
    #[derive(Clone, PartialEq, ::prost::Oneof)]
    pub enum Encoding {
        /// For dense `Tensor`s, the name of the tensor in the graph.
        #[prost(string, tag="1")]
        Name(::prost::alloc::string::String),
        /// There are many possible encodings of sparse matrices
        /// (<https://en.wikipedia.org/wiki/Sparse_matrix>).  Currently, TensorFlow
        /// uses only the COO encoding.  This is supported and documented in the
        /// SparseTensor Python class.
        #[prost(message, tag="4")]
        CooSparse(CooSparse),
        /// Generic encoding for CompositeTensors.
        #[prost(message, tag="5")]
        CompositeTensor(CompositeTensor),
    }
}
/// SignatureDef defines the signature of a computation supported by a TensorFlow
/// graph.
///
/// For example, a model with two loss computations, sharing a single input,
/// might have the following signature_def map.
///
/// Note that across the two SignatureDefs "loss_A" and "loss_B", the input key,
/// output key, and method_name are identical, and will be used by system(s) that
/// implement or rely upon this particular loss method. The output tensor names
/// differ, demonstrating how different outputs can exist for the same method.
///
/// signature_def {
///    key: "loss_A"
///    value {
///      inputs {
///        key: "input"
///        value {
///          name: "input:0"
///          dtype: DT_STRING
///          tensor_shape: ...
///        }
///      }
///      outputs {
///        key: "loss_output"
///        value {
///          name: "loss_output_A:0"
///          dtype: DT_FLOAT
///          tensor_shape: ...
///        }
///      }
///    }
///    ...
///    method_name: "some/package/compute_loss"
/// }
/// signature_def {
///    key: "loss_B"
///    value {
///      inputs {
///        key: "input"
///        value {
///          name: "input:0"
///          dtype: DT_STRING
///          tensor_shape: ...
///        }
///      }
///      outputs {
///        key: "loss_output"
///        value {
///          name: "loss_output_B:0"
///          dtype: DT_FLOAT
///          tensor_shape: ...
///        }
///      }
///    }
///    ...
///    method_name: "some/package/compute_loss"
/// }
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct SignatureDef {
    /// Named input parameters.
    #[prost(map="string, message", tag="1")]
    pub inputs: ::std::collections::HashMap<::prost::alloc::string::String, TensorInfo>,
    /// Named output parameters.
    #[prost(map="string, message", tag="2")]
    pub outputs: ::std::collections::HashMap<::prost::alloc::string::String, TensorInfo>,
    /// Extensible method_name information enabling third-party users to mark a
    /// SignatureDef as supporting a particular method. This enables producers and
    /// consumers of SignatureDefs, e.g. a model definition library and a serving
    /// library to have a clear hand-off regarding the semantics of a computation.
    ///
    /// Note that multiple SignatureDefs in a single MetaGraphDef may have the same
    /// method_name. This is commonly used to support multi-headed computation,
    /// where a single graph computation may return multiple results.
    #[prost(string, tag="3")]
    pub method_name: ::prost::alloc::string::String,
}
/// An asset file def for a single file or a set of sharded files with the same
/// name.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct AssetFileDef {
    /// The tensor to bind the asset filename to.
    #[prost(message, optional, tag="1")]
    pub tensor_info: ::core::option::Option<TensorInfo>,
    /// The filename within an assets directory. Note: does not include the path
    /// prefix, i.e. directories. For an asset at /tmp/path/vocab.txt, the filename
    /// would be "vocab.txt".
    #[prost(string, tag="2")]
    pub filename: ::prost::alloc::string::String,
}
/// SavedModel is the high level serialization format for TensorFlow Models.
/// See [todo: doc links, similar to session_bundle] for more information.
#[derive(Clone, PartialEq, ::prost::Message)]
pub struct SavedModel {
    /// The schema version of the SavedModel instance. Used for versioning when
    /// making future changes to the specification/implementation. Initial value
    /// at release will be 1.
    #[prost(int64, tag="1")]
    pub saved_model_schema_version: i64,
    /// One or more MetaGraphs.
    #[prost(message, repeated, tag="2")]
    pub meta_graphs: ::prost::alloc::vec::Vec<MetaGraphDef>,
}