1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
use tract_hir::internal::*; use tract_hir::ops; use crate::model::ParsingContext; use crate::model::TfOpRegister; use crate::tfpb::tensorflow::NodeDef; pub fn register_all_ops(reg: &mut TfOpRegister) { reg.insert("FakeQuantWithMinMaxVars", fake_quant_with_min_max_vars); } fn fake_quant_with_min_max_vars( _ctx: &ParsingContext, node: &NodeDef, ) -> TractResult<Box<dyn InferenceOp>> { let narrow_range = node.get_attr_bool("narrow_range")?; let num_bits = node.get_attr_int("num_bits")?; Ok(expand(FakeQuantWithMinMaxVars::new(narrow_range, num_bits))) } #[derive(Clone, Debug, new, Hash)] struct FakeQuantWithMinMaxVars { narrow_range: bool, num_bits: usize, } tract_linalg::impl_dyn_hash!(FakeQuantWithMinMaxVars); impl FakeQuantWithMinMaxVars { fn step(&self, min: &Tensor, max: &Tensor) -> TractResult<f32> { let min = min.to_scalar::<f32>()?; let max = max.to_scalar::<f32>()?; let amplitude = max - min; let scale_len = 2_usize.pow(self.num_bits as u32) - 1 - self.narrow_range as usize; Ok(amplitude / scale_len as f32) } } impl Expansion for FakeQuantWithMinMaxVars { fn name(&self) -> Cow<str> { "FakeQuantWithMinMaxVars".into() } op_tf!(); fn rules<'r, 'p: 'r, 's: 'r>( &'s self, s: &mut Solver<'r>, inputs: &'p [TensorProxy], outputs: &'p [TensorProxy], ) -> InferenceResult { check_input_arity(&inputs, 3)?; check_output_arity(&outputs, 1)?; s.equals(&inputs[0].datum_type, &inputs[1].datum_type)?; s.equals(&inputs[0].datum_type, &inputs[2].datum_type)?; s.equals(&inputs[1].shape, shapefactoid!())?; s.equals(&inputs[2].shape, shapefactoid!())?; s.equals(&inputs[0].datum_type, &outputs[0].datum_type)?; s.equals(&inputs[0].shape, &outputs[0].shape)?; Ok(()) } fn wire( &self, prefix: &str, target: &mut TypedModel, inputs: &[OutletId], ) -> TractResult<TVec<OutletId>> { if let (Some(min), Some(max)) = ( target.outlet_fact(inputs[1])?.konst.as_ref(), target.outlet_fact(inputs[2])?.konst.as_ref(), ) { let rank = target.outlet_fact(inputs[0])?.rank(); let step = self.step(&min, &max)?; let min = *min.to_scalar::<f32>()?; let wire = &inputs[0..1]; let wire = target.wire_node( format!("{}.sub-min", prefix), ops::math::add::unary(tensor0(-min).broadcast_into_rank(rank)?.into_arc_tensor()), &wire, )?; let wire = target.wire_node( format!("{}.div-step", prefix), ops::math::mul::unary( tensor0(step.recip()).broadcast_into_rank(rank)?.into_arc_tensor(), ), &wire, )?; let wire = target.wire_node(format!("{}.round", &*prefix), ops::math::round(), &wire)?; let wire = target.wire_node( format!("{}.mul-step", &*prefix), ops::math::mul::unary(tensor0(step).broadcast_into_rank(rank)?.into_arc_tensor()), &wire, )?; target.wire_node( format!("{}.add-min", &*prefix), ops::math::add::unary(tensor0(min).broadcast_into_rank(rank)?.into_arc_tensor()), &wire, ) } else { bail!("Operator can not be made a TypedOp.") } } }