1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
use crate::internal::*; use tract_core::num_traits::Zero; use tract_core::ops::cnn::{MaxPool, PaddingSpec, PoolSpec, SumPool}; register_all!(MaxPool: pulsify_max_pool, SumPool: pulsify_sum_pool); fn pulsify_max_pool( op: &MaxPool, source: &TypedModel, node: &TypedNode, target: &mut PulsedModel, mapping: &HashMap<OutletId, OutletId>, _pulse: usize, ) -> TractResult<TVec<OutletId>> { fn min_value<D: Datum + tract_core::num_traits::Bounded>() -> Tensor { tensor0(D::min_value()) } let fact = target.outlet_fact(mapping[&node.inputs[0]])?; let min = dispatch_numbers!(min_value(fact.datum_type)()); let (wire, pool_spec) = pulsify(&op.pool_spec, source, node, target, mapping, Some(min))?; target.wire_node(&node.name, MaxPool { pool_spec, ..op.clone() }, &[wire]) } fn pulsify_sum_pool( op: &SumPool, source: &TypedModel, node: &TypedNode, target: &mut PulsedModel, mapping: &HashMap<OutletId, OutletId>, _pulse: usize, ) -> TractResult<TVec<OutletId>> { let (wire, pool_spec) = pulsify(&op.pool_spec, source, node, target, mapping, None)?; target.wire_node(&node.name, SumPool { pool_spec, ..op.clone() }, &[wire]) } impl PulsedOp for SumPool { fn pulsed_output_facts(&self, inputs: &[&PulsedFact]) -> TractResult<TVec<PulsedFact>> { pulsed_output_facts(&self.pool_spec, inputs) } as_op!(); pulsed_op_to_typed_op!(); } impl PulsedOp for MaxPool { fn pulsed_output_facts(&self, inputs: &[&PulsedFact]) -> TractResult<TVec<PulsedFact>> { let mut facts = pulsed_output_facts(&self.pool_spec, inputs)?; if let Some(idt) = self.with_index_outputs { facts.push(facts[0].clone()); facts[1].datum_type = idt; } Ok(facts) } as_op!(); pulsed_op_to_typed_op!(); } pub fn pulsed_output_facts( spec: &PoolSpec, inputs: &[&PulsedFact], ) -> TractResult<TVec<PulsedFact>> { let ishape = spec.data_format.shape(&inputs[0].shape)?; let computed = spec.padding.compute( ishape.hw_dims(), &*spec.kernel_shape, &spec.dilations(), &spec.strides(), ); let spatial_dims = computed.into_iter().map(|d| d.convoluted).collect::<TVec<TDim>>(); let oshape = spec.data_format.from_n_c_hw( ishape.n().cloned().unwrap_or(1.to_dim()), spec.output_channel_override.map(|d| d.to_dim()).unwrap_or_else(|| ishape.c().clone()), spatial_dims, )?; let mut fact = inputs[0].clone(); let input_shape = spec.data_format.shape(&*fact.shape)?; let geo_axis = fact.axis - input_shape.h_axis(); let dilation = spec.dilations.as_ref().map(|d| d[geo_axis]).unwrap_or(1); let kernel_len = (spec.kernel_shape[geo_axis] - 1) * dilation; let stride = spec.strides.as_ref().and_then(|v| v.get(geo_axis).cloned()).unwrap_or(1); fact.delay /= stride; fact.dim = (fact.dim.clone() - kernel_len.to_dim()).div_ceil(stride as _); fact.shape = oshape.shape.into(); Ok(tvec!(fact)) } pub fn pulsify( spec: &PoolSpec, _source: &TypedModel, node: &TypedNode, target: &mut PulsedModel, mapping: &HashMap<OutletId, OutletId>, padding_value: Option<Tensor>, ) -> TractResult<(OutletId, PoolSpec)> { let mut wire = mapping[&node.inputs[0]]; let mut fact: PulsedFact = target.outlet_fact(wire)?.clone(); let input_shape = spec.data_format.shape(fact.shape.clone())?; if Some(fact.axis) == input_shape.n_axis() { return Ok((wire, spec.clone())); } if fact.axis == input_shape.c_axis() { bail!("Can not pulsify cnn pooling ops along the input channel axis"); } let geo_axis = fact.axis - input_shape.h_axis(); let stride = spec.strides.as_ref().and_then(|v| v.get(geo_axis).cloned()).unwrap_or(1); let pulse = fact.pulse(); if pulse % stride != 0 { bail!("Pulsificaton requires pulse to be a stride multiple") } let computed_padding = spec.padding.compute_one( geo_axis, &fact.dim, spec.kernel_shape[geo_axis], spec.dilation(geo_axis), spec.stride(geo_axis), ); let has_padding = !computed_padding.pad_before.is_zero() || !computed_padding.pad_after.is_zero(); if has_padding { use tract_core::ops::array::PadMode; let value = if let Some(tensor) = padding_value { tensor.into_arc_tensor() } else { bail!("No padding value for streaming pool operation"); }; let before = computed_padding.pad_before.to_usize()?; let extra_delay = before.saturating_sub(fact.delay); if extra_delay > 0 { wire = target.wire_node( format!("{}.delay-for-pad", node.name), tract_pulse_opl::ops::Delay::new(fact.axis, &(&fact).into(), extra_delay, 0), &[wire], )?[0]; fact = target.outlet_fact(wire)?.clone(); } let op = tract_pulse_opl::ops::PulsePad { axis: fact.axis, pulse, before, after: computed_padding.pad_after.clone(), begin_input: fact.delay, end_input: fact.delay.to_dim() + &fact.dim, mode: PadMode::Constant(value), }; wire = target.wire_node(format!("{}.pad", node.name), op, &[wire])?[0]; fact = target.outlet_fact(wire)?.clone(); } let dilation = spec.dilations.as_ref().map(|d| d[geo_axis]).unwrap_or(1); let kernel_len = (spec.kernel_shape[geo_axis] - 1) * dilation; let overlap = (kernel_len + 1).saturating_sub(stride); let misalignment = fact.delay % pulse; if overlap > 0 || misalignment > 0 { let align_to = (overlap + fact.delay).div_ceil(stride) * stride; let delay = align_to - overlap - fact.delay; wire = target.wire_node( format!("{}.delay", node.name), tract_pulse_opl::ops::Delay::new(fact.axis, &(&fact).into(), delay, overlap), &[wire], )?[0]; } if has_padding { let mut bef = tvec!(); let mut aft = tvec!(); for ix in 0..input_shape.hw_rank() { if ix == geo_axis { bef.push(0); aft.push(0); } else { let c = spec.padding.compute_one( ix, &input_shape.hw_dims()[ix], spec.kernel_shape[ix], spec.dilations()[ix], spec.strides()[ix], ); bef.push(c.pad_before.to_usize()?); aft.push(c.pad_after.to_usize()?); }; } Ok((wire, PoolSpec { padding: PaddingSpec::Explicit(bef, aft, true), ..spec.clone() })) } else { Ok((wire, spec.clone())) } }