1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
use tract_nnef::internal::*;
use tract_nnef::tract_core::ops::OpStateFreeze;

pub fn register(registry: &mut Registry) {
    registry.register_primitive(
        "tract_pulse_delay",
        &[
            TypeName::Scalar.tensor().named("input"),
            TypeName::Integer.named("axis"),
            TypeName::Integer.named("delay"),
            TypeName::Integer.named("overlap"),
        ],
        &[("output", TypeName::Scalar.tensor())],
        de_delay,
    );
}

fn de_delay(builder: &mut ModelBuilder, invocation: &ResolvedInvocation) -> TractResult<Value> {
    let wire = invocation.named_arg_as(builder, "input")?;
    let axis = invocation.named_arg_as::<i64>(builder, "axis")? as usize;
    let delay = invocation.named_arg_as::<i64>(builder, "delay")? as usize;
    let overlap = invocation.named_arg_as::<i64>(builder, "overlap")? as usize;
    let input_fact = builder.model.outlet_fact(wire)?;
    let op = Delay::new_typed(input_fact, axis, delay, overlap);
    builder.wire(op, &[wire])
}

#[derive(Debug, Clone)]
pub struct DelayState {
    pub buffer: Option<Tensor>,
}

impl DelayState {
    /// Apply delay op on input and store the result in the output tensor
    /// This method doesn't use allocation.
    ///
    /// # Safety
    ///
    /// Input and Ouput tensors shape must be compatible with this operator, otherwise it could lead
    /// to an undefined behaviour.
    pub unsafe fn apply_delay_unchecked(
        &mut self,
        op: &Delay,
        input: &Tensor,
        output: &mut Tensor,
    ) {
        let buffered = op.delay + op.overlap;
        let input_pulse = input.shape()[op.axis];
        let output_pulse = input_pulse + op.overlap;
        let buffer = self.buffer.as_mut().unwrap();
        if op.delay < input_pulse {
            let from_input = input_pulse - op.delay;
            let from_buffer = output_pulse - from_input;
            output.assign_slice_unchecked(..from_buffer, buffer, ..from_buffer, op.axis);
            output.assign_slice_unchecked(from_buffer.., input, ..from_input, op.axis);
        } else {
            output.assign_slice_unchecked(.., buffer, ..output_pulse, op.axis);
        };
        // maintain buffer
        if buffered < input_pulse {
            buffer.assign_slice_unchecked(.., input, (input_pulse - buffered).., op.axis);
        } else {
            let stride = buffer.shape().iter().skip(op.axis + 1).product::<usize>()
                * input.datum_type().size_of()
                * input_pulse;
            std::slice::from_raw_parts_mut(
                buffer.as_ptr_mut_unchecked::<u8>(),
                buffer.len() * input.datum_type().size_of(),
            )
            .rotate_left(stride);
            buffer.assign_slice_unchecked((buffered - input_pulse).., input, .., op.axis);
        }
    }
}

impl OpState for DelayState {
    fn eval(
        &mut self,
        _state: &mut SessionState,
        op: &dyn Op,
        mut inputs: TVec<TValue>,
    ) -> TractResult<TVec<TValue>> {
        let input = args_1!(inputs);
        let op = op.downcast_ref::<Delay>().ok_or_else(|| format_err!("Wrong Op type"))?;
        let buffered = op.delay + op.overlap;
        let input_pulse = input.shape()[op.axis];
        let output_pulse = input_pulse + op.overlap;
        let mut output_shape: TVec<usize> = input.shape().into();
        output_shape[op.axis] = output_pulse;
        // build output
        unsafe {
            if self.buffer.is_none() {
                let mut shape = input.shape().to_owned();
                shape[op.axis] = buffered;
                self.buffer = Some(Tensor::uninitialized_dt(input.datum_type(), &shape)?);
            };
            let mut output = Tensor::uninitialized_dt(input.datum_type(), &output_shape)?;
            self.apply_delay_unchecked(op, &input, &mut output);
            Ok(tvec!(output.into()))
        }
    }
}

#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Delay {
    pub datum_type: DatumType,
    pub buffer_shape: TVec<TDim>,
    pub axis: usize,
    pub delay: usize,
    pub overlap: usize,
}

impl_dyn_hash!(Delay);

impl Delay {
    pub fn new_typed(input_fact: &TypedFact, axis: usize, delay: usize, overlap: usize) -> Delay {
        let mut buffer_shape: TVec<TDim> = input_fact.shape.to_tvec();
        buffer_shape[axis] = (delay + overlap).to_dim();
        Delay { datum_type: input_fact.datum_type, buffer_shape, axis, delay, overlap }
    }
}

impl Op for Delay {
    fn name(&self) -> Cow<str> {
        "Delay".into()
    }

    fn info(&self) -> TractResult<Vec<String>> {
        Ok(vec![
            format!("axis: {} delay: {} overlap: {}", self.axis, self.delay, self.overlap),
            format!("buffer: {:?} {:?}", self.buffer_shape, self.datum_type),
        ])
    }

    impl_op_same_as!();
    op_as_typed_op!();
}

impl EvalOp for Delay {
    fn is_stateless(&self) -> bool {
        false
    }

    fn state(
        &self,
        _session: &mut SessionState,
        _node_id: usize,
    ) -> TractResult<Option<Box<dyn OpState>>> {
        Ok(Some(Box::new(DelayState { buffer: None })))
    }
}

impl TypedOp for Delay {
    as_op!();

    fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
        let mut fact = inputs[0].clone();
        fact.shape.set(self.axis, fact.shape[self.axis].clone() + self.overlap.to_dim());
        Ok(tvec!(fact))
    }

    fn cost(&self, _inputs: &[&TypedFact]) -> TractResult<TVec<(Cost, TDim)>> {
        Ok(tvec!((Cost::Buffer(self.datum_type), self.buffer_shape.iter().product())))
    }

    fn suggested_axis_changes(&self) -> TractResult<TVec<(InOut, AxisOp)>> {
        if self.axis != 0 {
            Ok(tvec!((InOut::In(0), AxisOp::Move(self.axis, 0))))
        } else {
            Ok(tvec!())
        }
    }

    fn change_axes(
        &self,
        model: &TypedModel,
        node: &TypedNode,
        _io: InOut,
        change: &AxisOp,
    ) -> TractResult<Option<AxisChangeConsequence>> {
        if let Some(axis) = change.transform_axis(self.axis) {
            if axis != self.axis {
                Ok(Some(AxisChangeConsequence::new(
                    model,
                    node,
                    Some(Box::new(Self { axis, ..self.clone() }) as _),
                    change,
                )))
            } else {
                Ok(Some(AxisChangeConsequence::new(model, node, None, change)))
            }
        } else {
            Ok(None)
        }
    }
}

#[derive(Debug, Clone, PartialEq, Eq, Hash, Default)]
struct FrozenDelayState {
    buffer: Option<Arc<Tensor>>,
}

impl OpStateFreeze for DelayState {
    fn freeze(&self) -> Box<dyn FrozenOpState> {
        Box::new(FrozenDelayState { buffer: self.buffer.as_ref().map(|t| t.clone().into_arc_tensor()) })
    }
}

impl FrozenOpState for FrozenDelayState {
    fn unfreeze(&self) -> Box<dyn OpState> {
        Box::new(DelayState { buffer: self.buffer.as_ref().map(|t| t.clone().into_tensor()) })
    }
}