1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
use std::ops::AddAssign;
use tract_ndarray::Axis;
use tract_nnef::internal::*;
use tract_num_traits::Zero;
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct DeconvDelay {
pub axis: usize,
pub overlap: usize,
pub delay: usize,
pub stride: usize,
pub pulse: usize,
pub deconv_input_dim: TDim,
pub deconv_output_dim: TDim,
}
impl_dyn_hash!(DeconvDelay);
impl Op for DeconvDelay {
fn name(&self) -> Cow<str> {
"DeconvDelay".into()
}
op_pulse!();
op_as_typed_op!();
}
impl EvalOp for DeconvDelay {
fn is_stateless(&self) -> bool {
false
}
fn eval(&self, _inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> {
unreachable!()
}
fn state(
&self,
_session: &mut SessionState,
_node_id: usize,
) -> TractResult<Option<Box<dyn OpState>>> {
Ok(Some(Box::new(DeconvDelayState { valid_inputed: -(self.delay as isize), buffer: None })))
}
}
impl TypedOp for DeconvDelay {
fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
let mut fact = inputs[0].clone();
let len = fact.shape[self.axis].clone();
fact.shape.set(self.axis, len - self.overlap);
Ok(tvec!(fact))
}
as_op!();
}
#[derive(Debug, Clone, PartialEq, Eq, Hash, Default)]
pub struct DeconvDelayState {
valid_inputed: isize,
buffer: Option<Tensor>,
}
impl OpState for DeconvDelayState {
fn eval(
&mut self,
session: &mut SessionState,
op: &dyn Op,
inputs: TVec<Arc<Tensor>>,
) -> TractResult<TVec<Arc<Tensor>>> {
let op = op.downcast_ref::<DeconvDelay>().context("Wrong op")?;
if self.buffer.is_none() {
let mut buffer_size: TVec<usize> = inputs[0].shape().into();
buffer_size[op.axis] = op.overlap; self.buffer = Some(Tensor::zero_dt(inputs[0].datum_type(), &*buffer_size)?);
}
let mut input = inputs[0].clone().into_tensor();
dispatch_numbers!(Self::eval_t(input.datum_type())(self, session, op, &mut input))?;
let output = input.slice(op.axis, 0, input.shape()[op.axis] - op.overlap)?;
Ok(tvec!(output.into_arc_tensor()))
}
}
impl DeconvDelayState {
fn eval_t<T: Datum + AddAssign + Zero>(
&mut self,
session: &SessionState,
op: &DeconvDelay,
input: &mut Tensor,
) -> TractResult<()> {
let buffer = self.buffer.as_mut().unwrap();
let mut buffer = buffer.to_array_view_mut::<T>()?;
let mut input = input.to_array_view_mut::<T>()?;
let input_pulse = input.shape()[op.axis];
let output_pulse = input_pulse - op.overlap;
self.valid_inputed += output_pulse as isize;
if let Ok(input_dim) = op.deconv_input_dim.eval(&session.resolved_symbols).to_isize() {
if self.valid_inputed > input_dim {
let to_be_zeroed = ((self.valid_inputed - input_dim) as usize).min(input_pulse);
let mut zeroed =
input.slice_axis_mut(Axis(op.axis), (input_pulse - to_be_zeroed..).into());
zeroed.fill(T::zero());
}
}
{
let mut input_view = input.slice_axis_mut(Axis(op.axis), (0..op.overlap).into());
input_view += &buffer;
}
buffer.assign(&input.slice_axis(Axis(op.axis), (output_pulse..).into()));
Ok(())
}
}