1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
use std::ops::AddAssign;

use tract_ndarray::Axis;
use tract_nnef::internal::*;
use tract_num_traits::Zero;

#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct DeconvDelay {
    pub axis: usize,
    pub overlap: usize,
    pub delay: usize,
    pub stride: usize,
    pub pulse: usize,
    pub deconv_input_dim: TDim,
    pub deconv_output_dim: TDim,
}

impl_dyn_hash!(DeconvDelay);

impl Op for DeconvDelay {
    fn name(&self) -> Cow<str> {
        "DeconvDelay".into()
    }

    op_pulse!();
    op_as_typed_op!();
}

impl EvalOp for DeconvDelay {
    fn is_stateless(&self) -> bool {
        false
    }

    fn eval(&self, _inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> {
        unreachable!()
    }

    fn state(
        &self,
        _session: &mut SessionState,
        _node_id: usize,
    ) -> TractResult<Option<Box<dyn OpState>>> {
        Ok(Some(Box::new(DeconvDelayState { valid_inputed: -(self.delay as isize), buffer: None })))
    }
}

impl TypedOp for DeconvDelay {
    fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
        let mut fact = inputs[0].clone();
        let len = fact.shape[self.axis].clone();
        fact.shape.set(self.axis, len - self.overlap);
        Ok(tvec!(fact))
    }

    as_op!();
}

#[derive(Debug, Clone, PartialEq, Eq, Hash, Default)]
pub struct DeconvDelayState {
    valid_inputed: isize,
    buffer: Option<Tensor>,
}

impl OpState for DeconvDelayState {
    fn eval(
        &mut self,
        session: &mut SessionState,
        op: &dyn Op,
        inputs: TVec<Arc<Tensor>>,
    ) -> TractResult<TVec<Arc<Tensor>>> {
        let op = op.downcast_ref::<DeconvDelay>().context("Wrong op")?;
        if self.buffer.is_none() {
            let mut buffer_size: TVec<usize> = inputs[0].shape().into();
            buffer_size[op.axis] = op.overlap; //+ (op.stride - 1) * (op.pulse - 1);
            self.buffer = Some(Tensor::zero_dt(inputs[0].datum_type(), &*buffer_size)?);
        }
        let mut input = inputs[0].clone().into_tensor();
        dispatch_numbers!(Self::eval_t(input.datum_type())(self, session, op, &mut input))?;
        let output = input.slice(op.axis, 0, input.shape()[op.axis] - op.overlap)?;
        Ok(tvec!(output.into_arc_tensor()))
    }
}

impl DeconvDelayState {
    fn eval_t<T: Datum + AddAssign + Zero>(
        &mut self,
        session: &SessionState,
        op: &DeconvDelay,
        input: &mut Tensor,
    ) -> TractResult<()> {
        let buffer = self.buffer.as_mut().unwrap();
        let mut buffer = buffer.to_array_view_mut::<T>()?;
        let mut input = input.to_array_view_mut::<T>()?;
        let input_pulse = input.shape()[op.axis];
        let output_pulse = input_pulse - op.overlap;
        self.valid_inputed += output_pulse as isize;
        if let Ok(input_dim) = op.deconv_input_dim.eval(&session.resolved_symbols).to_isize() {
            if self.valid_inputed > input_dim {
                let to_be_zeroed = ((self.valid_inputed - input_dim) as usize).min(input_pulse);
                let mut zeroed =
                    input.slice_axis_mut(Axis(op.axis), (input_pulse - to_be_zeroed..).into());
                zeroed.fill(T::zero());
            }
        }
        {
            let mut input_view = input.slice_axis_mut(Axis(op.axis), (0..op.overlap).into());
            input_view += &buffer;
        }
        buffer.assign(&input.slice_axis(Axis(op.axis), (output_pulse..).into()));

        Ok(())
    }
}