1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
use crate::model::{OnnxOpRegister, ParsingContext};
use crate::pb::NodeProto;
use crate::pb_helpers::*;
use std::iter;
use tract_hir::internal::*;
use tract_hir::ops::array::{Slice, TypedConcat};
use tract_onnx_opl::ml::tree::*;

pub fn register_all_ops(reg: &mut OnnxOpRegister) {
    reg.insert("TreeEnsembleClassifier", tree_classifier);
}

fn tree_classifier(
    _ctx: &ParsingContext,
    node: &NodeProto,
) -> TractResult<(Box<dyn InferenceOp>, Vec<String>)> {
    let ensemble = parse_nodes_data(node, true)?;
    let class_labels = parse_class_data(node)?;
    let base_class_score =
        get_vec_attr_opt::<f32>(node, "base_values", ensemble.n_classes())?.map(|t| rctensor1(&t));
    let post_transform =
        node.get_attr_opt("post_transform")?.map(parse_post_transform).transpose()?.unwrap_or(None);

    // even numbers in leaves are categories id target of leaf contrib
    let binary_result_layout = class_labels.len() < 3
        && ensemble
            .data
            .leaves
            .as_slice::<u32>()?
            .iter()
            .enumerate()
            .all(|(ix, v)| ix % 2 == 1 || *v == 0);

    Ok((
        expand(TreeEnsembleClassifier {
            ensemble,
            class_labels,
            base_class_score,
            post_transform,
            binary_result_layout,
        }),
        vec![],
    ))
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum PostTransform {
    Softmax,
    Logistic,
    // SoftmaxZero,
    // Probit, // probit, especially multinomial, is p.i.t.a. - so let's ignore it for now
}

pub fn parse_post_transform(s: &str) -> TractResult<Option<PostTransform>> {
    match s {
        "NONE" => Ok(None),
        "SOFTMAX" => Ok(Some(PostTransform::Softmax)),
        "LOGISTIC" => Ok(Some(PostTransform::Logistic)),
        "PROBIT" | "SOFTMAX_ZERO" => bail!("PROBIT and SOFTMAX_ZERO unsupported"),
        _ => bail!("Invalid post transform: {}", s),
    }
}

fn parse_node_mode(s: &str) -> TractResult<Option<Cmp>> {
    match s {
        "BRANCH_LEQ" => Ok(Some(Cmp::LessEqual)),
        "BRANCH_LT" => Ok(Some(Cmp::Less)),
        "BRANCH_GTE" => Ok(Some(Cmp::GreaterEqual)),
        "BRANCH_GT" => Ok(Some(Cmp::Greater)),
        "BRANCH_EQ" => Ok(Some(Cmp::Equal)),
        "BRANCH_NEQ" => Ok(Some(Cmp::NotEqual)),
        "LEAF" => Ok(None),
        _ => bail!("Unsupported mode node: {}", s),
    }
}

fn get_vec_attr<'a, T>(node: &'a NodeProto, attr: &str, n: usize) -> TractResult<Vec<T>>
where
    T: AttrTVecType<'a>,
{
    let vec = node.get_attr_vec(attr)?;
    node.expect_attr(attr, vec.len() == n, || format!("length {}, got {}", vec.len(), n))?;
    Ok(vec)
}

fn get_vec_attr_opt<'a, T>(node: &'a NodeProto, attr: &str, n: usize) -> TractResult<Option<Vec<T>>>
where
    T: AttrTVecType<'a>,
{
    match node.get_attr_opt_vec(attr)? {
        Some(vec) => {
            node.expect_attr(attr, vec.len() == n, || {
                format!("length {} (or undefined), got {}", vec.len(), n)
            })?;
            Ok(Some(vec))
        }
        None => Ok(None),
    }
}

fn parse_class_data(node: &NodeProto) -> TractResult<Arc<Tensor>> {
    // parse n_classes from protobuf
    let ints = node.get_attr_opt_slice::<i64>("classlabels_int64s")?;
    let strs = node.get_attr_opt_tvec::<&str>("classlabels_strings")?;
    match (ints, strs) {
        (Some(n), None) => Ok(rctensor1(n)),
        (None, Some(n)) => Ok(rctensor1(&n.iter().map(|d| d.to_string()).collect::<Vec<_>>())),
        (None, None) => {
            bail!("cannot find neither 'classlabels_int64s' not 'classlabels_strings'")
        }
        (Some(_), Some(_)) => {
            bail!("only one of 'classlabels_int64s' and 'classlabels_strings' can be set")
        }
    }
}

fn parse_nodes_data(node: &NodeProto, is_classifier: bool) -> TractResult<TreeEnsemble> {
    // parse n_classes from protobuf
    let n_classes = if is_classifier {
        let ints = node.get_attr_opt_slice::<i64>("classlabels_int64s")?;
        let strs = node.get_attr_opt_tvec::<&str>("classlabels_strings")?;
        match (ints, strs) {
            (Some(n), None) => n.len(),
            (None, Some(n)) => n.len(),
            (None, None) => {
                bail!("cannot find neither 'classlabels_int64s' not 'classlabels_strings'")
            }
            (Some(_), Some(_)) => {
                bail!("only one of 'classlabels_int64s' and 'classlabels_strings' can be set")
            }
        }
    } else {
        node.get_attr("n_targets")?
    };
    let n_nodes = node.get_attr_slice::<i64>("nodes_featureids")?.len();
    node.expect_attr("nodes_featureids", n_nodes != 0, "at least one node")?;

    // parse base_values from protobuf
    let node_ids = get_vec_attr::<usize>(node, "nodes_nodeids", n_nodes)?;
    let tree_ids = get_vec_attr::<usize>(node, "nodes_treeids", n_nodes)?;
    let feature_ids = get_vec_attr::<usize>(node, "nodes_featureids", n_nodes)?;
    let true_ids = get_vec_attr::<usize>(node, "nodes_truenodeids", n_nodes)?;
    let false_ids = get_vec_attr::<usize>(node, "nodes_falsenodeids", n_nodes)?;
    let node_values = get_vec_attr::<f32>(node, "nodes_values", n_nodes)?;
    let nan_is_true = get_vec_attr_opt::<bool>(node, "nodes_missing_value_tracks_true", n_nodes)?
        .unwrap_or_else(|| iter::repeat(false).take(n_nodes).collect());
    let node_modes: Vec<Option<Cmp>> = get_vec_attr::<&str>(node, "nodes_modes", n_nodes)?
        .iter()
        .map(|s| parse_node_mode(s))
        .collect::<TractResult<_>>()?;

    let max_used_features = feature_ids.iter().max().copied().unwrap_or(0);

    use tract_onnx_opl::ml::tree_ensemble_classifier::parse_aggregate;
    // parse post_transform from protobuf
    // parse aggregate_fn from protobuf (for regressors)
    let aggregate_fn = parse_aggregate(if is_classifier {
        "SUM"
    } else {
        node.get_attr_opt("aggregate")?.unwrap_or("SUM")
    })?;

    // parse leaf data from protobuf
    let leaf_prefix = if is_classifier { "class" } else { "target" };
    let cls = |name| format!("{leaf_prefix}_{name}");

    let n_leaves = node.get_attr_slice::<i64>(&cls("ids"))?.len();
    node.expect_attr(&cls("ids"), n_leaves != 0, "at least one leaf")?;

    let leaf_node_ids = get_vec_attr::<usize>(node, &cls("nodeids"), n_leaves)?;
    let leaf_tree_ids = get_vec_attr::<usize>(node, &cls("treeids"), n_leaves)?;
    let leaf_class_ids = get_vec_attr::<usize>(node, &cls("ids"), n_leaves)?;
    let leaf_weights = get_vec_attr::<f32>(node, &cls("weights"), n_leaves)?;

    let inc_by_1 = |x: &[_]| x.iter().zip(x.iter().skip(1)).all(|(&x, &y)| y == x || y == x + 1);
    node.expect_attr("nodes_treeids", inc_by_1(&tree_ids), "tree ids to increase by 1")?;
    node.expect_attr(&cls("treeids"), inc_by_1(&leaf_tree_ids), "leaf tree ids to increase by 1")?;
    node.expect_attr("nodes_treeids", tree_ids[0] == 0, "tree ids to start from 0")?;
    node.expect_attr(&cls("treeids"), leaf_tree_ids[0] == 0, "leaf tree ids to start from 0")?;
    let n_trees = *tree_ids.last().unwrap() + 1;
    node.expect(
        leaf_tree_ids.last() == Some(&(n_trees - 1)),
        "mismatching # of trees (nodes/leaves)",
    )?;

    let mut node_order: Vec<usize> = (0usize..node_ids.len()).collect();
    node_order.sort_by_key(|&ix| (tree_ids[ix], node_ids[ix]));

    let mut leaf_order: Vec<usize> = (0usize..leaf_node_ids.len()).collect();
    leaf_order.sort_by_key(|&ix| (leaf_tree_ids[ix], leaf_node_ids[ix]));

    let mut trees = vec![];
    let mut nodes: Vec<u32> = vec![];
    let mut leaves: Vec<u32> = vec![];
    let mut current_tree_id = None;
    let mut in_leaf_ix = 0;
    for n in node_order.into_iter() {
        let node_id = node_ids[n];
        let tree_id = tree_ids[n];
        if Some(tree_id) != current_tree_id {
            current_tree_id = Some(tree_id);
            trees.push(nodes.len() as u32 / 5);
        }
        if let Some(mode) = node_modes[n] {
            let mut row = [0u32; 5];
            row[0] = feature_ids[n] as u32;
            row[1] = true_ids[n] as u32 + trees.last().unwrap();
            row[2] = false_ids[n] as u32 + trees.last().unwrap();
            row[3] = node_values[n].to_bits();
            row[4] = (0x0100u32 * nan_is_true[n] as u32) | mode as u32;
            nodes.extend(row.iter());
        } else {
            let mut row = [0u32; 5];
            row[0] = leaves.len() as u32 / 2;
            loop {
                if in_leaf_ix >= leaf_order.len()
                    || leaf_tree_ids[leaf_order[in_leaf_ix]] != tree_id
                    || leaf_node_ids[leaf_order[in_leaf_ix]] != node_id
                {
                    break;
                }
                let leaf_ix = leaf_order[in_leaf_ix];
                leaves.push(leaf_class_ids[leaf_ix] as u32);
                leaves.push(leaf_weights[leaf_ix].to_bits());
                in_leaf_ix += 1;
            }
            row[1] = leaves.len() as u32 / 2;
            nodes.extend(row.iter());
        };
    }
    let trees = rctensor1(&trees);
    let nodes = tensor1(&nodes).into_shape(&[nodes.len() / 5, 5])?.into_arc_tensor();
    let leaves = tensor1(&leaves).into_shape(&[leaves.len() / 2, 2])?.into_arc_tensor();
    let data = TreeEnsembleData { trees, nodes, leaves };
    TreeEnsemble::build(data, max_used_features, n_classes, aggregate_fn)
}

#[derive(Debug, Clone, Hash)]
pub struct TreeEnsembleClassifier {
    pub ensemble: TreeEnsemble,
    pub class_labels: Arc<Tensor>,
    pub base_class_score: Option<Arc<Tensor>>,
    pub post_transform: Option<PostTransform>,
    pub binary_result_layout: bool,
}



impl Expansion for TreeEnsembleClassifier {
    fn name(&self) -> Cow<str> {
        "TreeEnsembleClassifier".into()
    }

    fn info(&self) -> TractResult<Vec<String>> {
        Ok(vec![format!("binary result layout kludge: {:?}", self.binary_result_layout)])
    }

    fn rules<'r, 'p: 'r, 's: 'r>(
        &'s self,
        s: &mut Solver<'r>,
        inputs: &'p [TensorProxy],
        outputs: &'p [TensorProxy],
    ) -> InferenceResult {
        check_input_arity(inputs, 1)?;
        check_output_arity(outputs, 2)?;

        s.equals(&outputs[0].datum_type, self.class_labels.datum_type())?;
        s.equals(&outputs[1].datum_type, DatumType::F32)?;

        s.equals(&outputs[0].rank, 1)?;
        s.equals(&outputs[1].rank, 2)?;
        s.equals(&outputs[0].shape[0], &inputs[0].shape[0])?;
        s.equals(&outputs[1].shape[0], &inputs[0].shape[0])?;
        if self.binary_result_layout {
            s.equals(&outputs[1].shape[1], 2.to_dim())?;
        } else {
            s.equals(&outputs[1].shape[1], &self.class_labels.len().to_dim())?;
        }

        Ok(())
    }

    fn wire(
        &self,
        prefix: &str,
        model: &mut TypedModel,
        inputs: &[OutletId],
    ) -> TractResult<TVec<OutletId>> {
        use tract_core::ops::nn::*;

        let mut scores = model.wire_node(
            format!("{prefix}.classifier"),
            tract_onnx_opl::ml::tree_ensemble_classifier::TreeEnsembleClassifier {
                ensemble: self.ensemble.clone(),
            },
            inputs,
        )?;
        if let Some(base_class_score) = self.base_class_score.as_deref() {
            let base = base_class_score.clone().broadcast_into_rank(2)?.into_arc_tensor();
            let base = model.add_const(prefix.to_string() + ".base", base)?;
            scores = model.wire_node(
                format!("{prefix}.base_class_score"),
                tract_core::ops::math::add(),
                &[scores[0], base],
            )?;
        }
        match self.post_transform {
            None => (),
            Some(PostTransform::Softmax) => {
                scores = tract_hir::ops::nn::LayerSoftmax::new(1, false).wire(
                    &format!("{prefix}.softmax"),
                    model,
                    &scores,
                )?;
            }
            Some(PostTransform::Logistic) => {
                scores = model.wire_node(
                    &format!("{prefix}.logistic"),
                    tract_core::ops::nn::sigmoid(),
                    &scores,
                )?;
            }
        }
        let processed_scores = scores.clone();
        if self.binary_result_layout {
            scores = model.wire_node(
                &format!("{prefix}.binary_result_slice"),
                Slice::new(1, 0, 1),
                &scores,
            )?;
            let one = model.add_const(prefix.to_string() + ".one", rctensor2(&[[1f32]]))?;
            let complement = model.wire_node(
                &format!("{prefix}.binary_result_complement"),
                tract_core::ops::math::sub(),
                &[one, scores[0]],
            )?;
            scores = model.wire_node(
                &format!("{prefix}.binary_result"),
                TypedConcat::new(1),
                &[complement[0], scores[0]],
            )?;
        }
        let winners = model.wire_node(
            format!("{prefix}.argmax"),
            Reduce::new(tvec!(1), Reducer::ArgMax(false)),
            &processed_scores,
        )?;
        let reduced = model.wire_node(
            format!("{prefix}.rm_axis"),
            tract_core::ops::change_axes::AxisOp::Rm(1),
            &winners,
        )?;
        let casted = model.wire_node(
            format!("{prefix}.casted"),
            tract_core::ops::cast::cast(i32::datum_type()),
            &reduced,
        )?;
        let labels = model.wire_node(
            format!("{prefix}.labels"),
            tract_onnx_opl::ml::DirectLookup::new(
                self.class_labels.clone(),
                Tensor::zero_dt(self.class_labels.datum_type(), &[])?.into_arc_tensor(),
            )?,
            &casted,
        )?[0];
        Ok(tvec!(labels, scores[0]))
    }

    fn nboutputs(&self) -> TractResult<usize> {
        Ok(2)
    }
}