1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
use rand::distributions::uniform::SampleUniform;
use rand::prelude::Distribution;
use rand::rngs::SmallRng;
use rand::SeedableRng;
use rand_distr::num_traits::Float;
use rand_distr::StandardNormal;
use tract_nnef::internal::*;
use tract_nnef::ser::{array, tdims};
use tract_nnef::tract_core::trivial_op_state_freeeze;

pub fn register(registry: &mut Registry) {
    registry.register_primitive(
        "tract_onnx_random",
        &[
            TypeName::String.named("datum_type"),
            TypeName::Integer.array().named("shape"),
            TypeName::String.named("dist"),
            TypeName::Scalar.array().named("parameters"),
            TypeName::Integer.named("seed"),
        ],
        &[("output", TypeName::Scalar.tensor())],
        load,
    );
    registry.register_dumper(TypeId::of::<Random>(), dump);
}

fn load(builder: &mut ModelBuilder, invocation: &ResolvedInvocation) -> TractResult<Value> {
    let dt: DatumType = invocation.named_arg_as::<String>(builder, "datum_type")?.parse()?;
    let shape: TVec<TDim> = invocation.named_arg_as(builder, "shape")?;
    let fact = dt.fact(&shape);
    let dist: String = invocation.named_arg_as(builder, "dist")?;
    let parameters: TVec<Arc<Tensor>> = invocation.named_arg_as(builder, "parameters")?;
    let [p1, p2] = &*parameters else {
        bail!("Random expect two parameters")
    };
    let dist = match &*dist {
        "normal" => Dist::Normal { mean: p1.clone(), dev: p2.clone() },
        "uniform" => Dist::Uniform { low: p1.clone(), high: p2.clone() },
        _ => bail!("Unexpected distribution {}", dist),
    };
    let seed = invocation.get_named_arg_as(builder, "seed")?;
    let op = Random { fact, dist, seed };
    builder.wire(op, &[])
}

fn dump(_ast: &mut IntoAst, node: &TypedNode) -> TractResult<Option<Arc<RValue>>> {
    let op = node.op_as::<Random>().context("wrong op")?;
    let mut named = vec![
        ("datum_type", string(format!("{:?}", op.fact.datum_type))),
        ("shape", tdims(&op.fact.shape)),
    ];
    if let Some(seed) = op.seed {
        named.push(("seed", numeric(seed)));
    }
    match &op.dist {
        Dist::Uniform { low, high } => {
            named.push(("dist", string("uniform")));
            named.push((
                "parameters",
                array(&[
                    numeric(low.cast_to_scalar::<f32>()?),
                    numeric(high.cast_to_scalar::<f32>()?),
                ]),
            ));
        }
        Dist::Normal { mean, dev } => {
            named.push(("dist", string("normal")));
            named.push((
                "parameters",
                array(&[
                    numeric(mean.cast_to_scalar::<f32>()?),
                    numeric(dev.cast_to_scalar::<f32>()?),
                ]),
            ));
        }
    }
    Ok(Some(invocation("tract_onnx_random", &[], &named)))
}

#[derive(Debug, Clone, Hash)]
pub enum Dist {
    Uniform { low: Arc<Tensor>, high: Arc<Tensor> },
    Normal { mean: Arc<Tensor>, dev: Arc<Tensor> },
}

#[derive(Debug, Clone, Hash)]
pub struct Random {
    pub fact: TypedFact,
    pub dist: Dist,
    pub seed: Option<u64>,
}



impl Op for Random {
    fn name(&self) -> Cow<str> {
        "Random".into()
    }

    op_as_typed_op!();
}

impl TypedOp for Random {
    fn output_facts(&self, _inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
        Ok(tvec!(self.fact.clone()))
    }

    as_op!();
}

impl EvalOp for Random {
    fn is_stateless(&self) -> bool {
        false
    }

    fn state(
        &self,
        _session: &mut SessionState,
        _node_id: usize,
    ) -> TractResult<Option<Box<dyn OpState>>> {
        let rng = self.seed.map(SmallRng::seed_from_u64).unwrap_or_else(SmallRng::from_entropy);
        Ok(Some(Box::new(RandomState(rng))))
    }
}

#[derive(Clone, Debug)]
struct RandomState(SmallRng);

impl OpState for RandomState {
    fn eval(
        &mut self,
        session: &mut SessionState,
        op: &dyn Op,
        _inputs: TVec<TValue>,
    ) -> TractResult<TVec<TValue>> {
        let op = op.downcast_ref::<Random>().context("op and state mismatch")?;
        let mut tensor = unsafe {
            Tensor::uninitialized_dt(
                op.fact.datum_type,
                &op.fact.shape.eval_to_usize(&session.resolved_symbols)?,
            )?
        };
        match &op.dist {
            Dist::Uniform { low, high } => match op.fact.datum_type {
                DatumType::F32 => sample_uniform::<f32>(&mut tensor, &mut self.0, low, high)?,
                DatumType::F64 => sample_uniform::<f64>(&mut tensor, &mut self.0, low, high)?,
                DatumType::F16 => {
                    sample_uniform::<f32>(&mut tensor, &mut self.0, low, high)?;
                    tensor = tensor.cast_to::<f16>()?.into_owned();
                }
                _ => bail!("Random only support float types"),
            },
            Dist::Normal { mean, dev } => match op.fact.datum_type {
                DatumType::F32 => sample_normal::<f32>(&mut tensor, &mut self.0, mean, dev)?,
                DatumType::F64 => sample_normal::<f64>(&mut tensor, &mut self.0, mean, dev)?,
                DatumType::F16 => {
                    sample_uniform::<f32>(&mut tensor, &mut self.0, mean, dev)?;
                    tensor = tensor.cast_to::<f16>()?.into_owned();
                }
                _ => bail!("Random only support float types"),
            },
        }
        Ok(tvec!(tensor.into_tvalue()))
    }
}

trivial_op_state_freeeze!(RandomState);

fn sample_uniform<T: Datum + SampleUniform + Copy>(
    t: &mut Tensor,
    r: &mut SmallRng,
    low: &Tensor,
    high: &Tensor,
) -> TractResult<()> {
    let dist =
        rand::distributions::Uniform::new(low.cast_to_scalar::<T>()?, high.cast_to_scalar::<T>()?);
    t.as_slice_mut::<T>()?.iter_mut().zip(dist.sample_iter(r)).for_each(|(v, r)| *v = r);
    Ok(())
}

fn sample_normal<T: Datum + Float + Copy>(
    t: &mut Tensor,
    r: &mut SmallRng,
    mean: &Tensor,
    dev: &Tensor,
) -> TractResult<()>
where
    StandardNormal: Distribution<T>,
{
    let dist =
        rand_distr::Normal::<T>::new(mean.cast_to_scalar::<T>()?, dev.cast_to_scalar::<T>()?)?;
    t.as_slice_mut::<T>()?.iter_mut().zip(dist.sample_iter(r)).for_each(|(v, r)| *v = r);
    Ok(())
}