1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
use crate::ast::ProtoModel;
use crate::internal::*;
use std::io::Read;
use std::path::Path;

pub fn stdlib() -> Vec<FragmentDef> {
    crate::ast::parse::parse_fragments(include_str!("../stdlib.nnef")).unwrap()
}

pub struct Nnef {
    pub stdlib: Vec<FragmentDef>,
    pub registries: Vec<Registry>,
}

impl Nnef {
    pub fn new() -> Nnef {
        Nnef { stdlib: stdlib(), registries: vec![crate::ops::tract_nnef()] }
    }

    pub fn with_registry(mut self, registry: Registry) -> Nnef {
        self.registries.push(registry);
        self
    }

    pub fn with_tract_core(mut self) -> Self {
        self.registries.push(crate::ops::tract_core());
        self
    }

    pub fn translate(
        &self,
        proto_model: &ProtoModel,
    ) -> Result<TypedModel, (TypedModel, TractError)> {
        ModelBuilder::new(self, proto_model).into_typed_model()
    }

    pub fn write(&self, model: &TypedModel, w: impl std::io::Write) -> TractResult<()> {
        self.write_to_tar(model, w)?;
        Ok(())
    }

    pub fn write_to_tar<W: std::io::Write>(&self, model: &TypedModel, w: W) -> TractResult<W> {
        let proto_model = crate::ser::to_proto_model(&self, model)?;
        let mut ar = tar::Builder::new(w);
        let mut graph_data = vec![];
        crate::ast::dump::Dumper::new(&mut graph_data).document(&proto_model.doc)?;
        let now =
            std::time::SystemTime::now().duration_since(std::time::SystemTime::UNIX_EPOCH).unwrap();
        let mut header = tar::Header::new_gnu();
        header.set_path("graph.nnef")?;
        header.set_size(graph_data.len() as u64);
        header.set_mode(0o644);
        header.set_mtime(now.as_secs());
        header.set_cksum();
        ar.append(&header, &mut &*graph_data)?;

        for (label, t) in &proto_model.tensors {
            let label = label.to_string() + ".dat";
            let filename = std::path::Path::new(&label);
            let mut data = vec![];
            crate::tensors::write_tensor(&mut data, t)?;

            let mut header = tar::Header::new_gnu();
            header.set_size(data.len() as u64);
            header.set_mode(0o644);
            header.set_mtime(now.as_secs());
            header.set_cksum();

            ar.append_data(&mut header, &*filename, &mut &*data)?;
        }
        Ok(ar.into_inner()?)
    }

    pub fn write_to_dir(
        &self,
        model: &TypedModel,
        path: impl AsRef<std::path::Path>,
    ) -> TractResult<()> {
        let path = path.as_ref();
        if path.exists() {
            bail!("{:?} already exists. Won't overwrite.", path);
        }
        let proto_model = crate::ser::to_proto_model(&self, model)?;
        std::fs::create_dir_all(path)?;
        let mut graph_nnef = std::fs::File::create(path.join("graph.nnef"))?;
        crate::ast::dump::Dumper::new(&mut graph_nnef).document(&proto_model.doc)?;
        for (label, t) in &proto_model.tensors {
            let label = label.to_string() + ".dat";
            std::fs::create_dir_all(path.join(&label).parent().unwrap())?;
            let filename = path.join(label);
            let mut file = std::fs::File::create(filename)?;
            crate::tensors::write_tensor(&mut file, t)?;
        }
        Ok(())
    }
}

impl tract_core::prelude::Framework<ProtoModel, TypedModel> for Nnef {
    fn model_for_path(&self, p: impl AsRef<Path>) -> TractResult<TypedModel> {
        let proto = self.proto_model_for_path(p)?;
        self.model_for_proto_model(&proto)
    }

    fn proto_model_for_path(&self, path: impl AsRef<Path>) -> TractResult<ProtoModel> {
        let path = path.as_ref();
        if path.is_file() {
            let mut f = std::fs::File::open(path)?;
            return self.proto_model_for_read(&mut f);
        }
        let mut text: Option<String> = None;
        let mut tensors: Vec<(String, Arc<Tensor>)> = Default::default();
        for entry in walkdir::WalkDir::new(path) {
            let entry =
                entry.map_err(|e| format_err!("Can not walk directory {:?}: {:?}", path, e))?;
            let subpath = entry
                .path()
                .components()
                .skip(path.components().count())
                .collect::<std::path::PathBuf>();
            let mut stream = std::fs::File::open(entry.path())?;
            read_stream(&subpath, &mut stream, &mut text, &mut tensors)?;
        }
        let text = text.ok_or_else(|| format_err!("Model must contain graph.nnef at top level"))?;
        let doc = crate::ast::parse::parse_document(&text)?;
        Ok(ProtoModel { doc, tensors })
    }

    fn proto_model_for_read(&self, reader: &mut dyn std::io::Read) -> TractResult<ProtoModel> {
        let mut text: Option<String> = None;
        let mut tensors: Vec<(String, Arc<Tensor>)> = Default::default();
        let mut buffer = vec![0u8; 2];
        reader.read_exact(&mut buffer)?;
        let header = std::io::Cursor::new(buffer.clone());
        let stream = header.chain(reader);
        let mut tar = if buffer == [0x1f, 0x8b] {
            #[cfg(feature = "flate2")]
            {
                let f = flate2::read::GzDecoder::new(stream);
                tar::Archive::new(Box::new(f) as Box<dyn Read>)
            }
            #[cfg(not(feature = "flate2"))]
            bail!("Cannot read gzip file without flate2 enabled.");
        } else {
            tar::Archive::new(Box::new(stream) as Box<dyn Read>)
        };
        for entry in tar.entries()? {
            let mut entry = entry?;
            let path = entry.path()?.to_path_buf();
            read_stream(&path, &mut entry, &mut text, &mut tensors)?;
        }
        let text = text.ok_or_else(|| format_err!("Model must contain graph.nnef at top level"))?;
        let doc = crate::ast::parse::parse_document(&text)?;
        Ok(ProtoModel { doc, tensors })
    }

    fn model_for_proto_model(&self, proto: &ProtoModel) -> TractResult<TypedModel> {
        self.translate(proto).map_err(|e| e.1)
    }
}

fn read_stream<R: std::io::Read>(
    path: &std::path::Path,
    reader: &mut R,
    text: &mut Option<String>,
    tensors: &mut Vec<(String, Arc<Tensor>)>,
) -> TractResult<()> {
    if path.file_name().map(|n| n == "graph.nnef").unwrap_or(false) {
        let mut t = String::new();
        reader.read_to_string(&mut t)?;
        *text = Some(t);
    } else if path.extension().map(|e| e == "dat").unwrap_or(false) {
        let mut path = path.to_path_buf();
        path.set_extension("");
        let id = path
            .to_str()
            .ok_or_else(|| format_err!("Badly encoded filename for tensor: {:?}", path))?;
        let tensor = crate::tensors::read_tensor(reader)?;
        tensors.push((id.to_string(), tensor.into_arc_tensor()));
    }
    Ok(())
}