Function tract_libcli::tensor::parse_spec
source · pub fn parse_spec(
symbol_table: &SymbolTable,
size: &str
) -> TractResult<InferenceFact>Examples found in repository?
src/tensor.rs (line 149)
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
fn tensor_for_text_data(symbol_table: &SymbolTable, filename: &str) -> TractResult<Tensor> {
let mut file = fs::File::open(filename)
.map_err(|e| format_err!("Reading tensor from {}, {:?}", filename, e))?;
let mut data = String::new();
file.read_to_string(&mut data)?;
let mut lines = data.lines();
let proto = parse_spec(symbol_table, lines.next().context("Empty data file")?)?;
let shape = proto.shape.concretize().unwrap();
let values = lines.flat_map(|l| l.split_whitespace()).collect::<Vec<&str>>();
// We know there is at most one streaming dimension, so we can deduce the
// missing value with a simple division.
let product: usize = shape.iter().map(|o| o.to_usize().unwrap_or(1)).product();
let missing = values.len() / product;
let shape: Vec<_> = shape.iter().map(|d| d.to_usize().unwrap_or(missing)).collect();
dispatch_numbers!(parse_values(proto.datum_type.concretize().unwrap())(&*shape, values))
}
/// Parses the `data` command-line argument.
pub fn for_data(
symbol_table: &SymbolTable,
filename: &str,
) -> TractResult<(Option<String>, InferenceFact)> {
#[allow(unused_imports)]
use std::convert::TryFrom;
if filename.ends_with(".pb") {
#[cfg(feature = "onnx")]
{
let file =
fs::File::open(filename).with_context(|| format!("Can't open {:?}", filename))?;
let proto = ::tract_onnx::tensor::proto_from_reader(file)?;
Ok((
Some(proto.name.to_string()).filter(|s| !s.is_empty()),
Tensor::try_from(proto)?.into(),
))
}
#[cfg(not(feature = "onnx"))]
{
panic!("Loading tensor from protobuf requires onnx features");
}
} else if filename.contains(".npz:") {
let mut tokens = filename.split(':');
let (filename, inner) = (tokens.next().unwrap(), tokens.next().unwrap());
let mut npz = ndarray_npy::NpzReader::new(std::fs::File::open(filename)?)?;
Ok((None, for_npz(&mut npz, inner)?.into()))
} else {
Ok((None, tensor_for_text_data(symbol_table, filename)?.into()))
}
}
pub fn for_npz(npz: &mut ndarray_npy::NpzReader<fs::File>, name: &str) -> TractResult<Tensor> {
if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<f32>, tract_ndarray::IxDyn>(name) {
return Ok(t.into_tensor());
}
if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<f64>, tract_ndarray::IxDyn>(name) {
return Ok(t.into_tensor());
}
if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<i8>, tract_ndarray::IxDyn>(name) {
return Ok(t.into_tensor());
}
if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<i16>, tract_ndarray::IxDyn>(name) {
return Ok(t.into_tensor());
}
if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<i32>, tract_ndarray::IxDyn>(name) {
return Ok(t.into_tensor());
}
if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<i64>, tract_ndarray::IxDyn>(name) {
return Ok(t.into_tensor());
}
if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<u8>, tract_ndarray::IxDyn>(name) {
return Ok(t.into_tensor());
}
if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<u16>, tract_ndarray::IxDyn>(name) {
return Ok(t.into_tensor());
}
if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<u32>, tract_ndarray::IxDyn>(name) {
return Ok(t.into_tensor());
}
if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<u64>, tract_ndarray::IxDyn>(name) {
return Ok(t.into_tensor());
}
if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<bool>, tract_ndarray::IxDyn>(name) {
return Ok(t.into_tensor());
}
bail!("Can not extract tensor from {}", name);
}
pub fn for_string(
symbol_table: &SymbolTable,
value: &str,
) -> TractResult<(Option<String>, InferenceFact)> {
if let Some(stripped) = value.strip_prefix('@') {
for_data(symbol_table, stripped)
} else {
let (name, value) = if value.contains(':') {
let mut splits = value.split(':');
(Some(splits.next().unwrap().to_string()), splits.next().unwrap())
} else {
(None, value)
};
if value.contains('=') {
let mut split = value.split('=');
let spec = parse_spec(symbol_table, split.next().unwrap())?;
let value = split.next().unwrap().split(',');
let dt = spec
.datum_type
.concretize()
.context("Must specify type when giving tensor value")?;
let shape = spec
.shape
.as_concrete_finite()?
.context("Must specify concrete shape when giving tensor value")?;
let tensor = dispatch_numbers!(parse_values(dt)(&*shape, value.collect()))?;
Ok((name, tensor.into()))
} else {
Ok((name, parse_spec(symbol_table, value)?))
}
}
}