pub fn parse_spec(
    symbol_table: &SymbolTable,
    size: &str
) -> TractResult<InferenceFact>
Examples found in repository?
src/tensor.rs (line 149)
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
fn tensor_for_text_data(symbol_table: &SymbolTable, filename: &str) -> TractResult<Tensor> {
    let mut file = fs::File::open(filename)
        .map_err(|e| format_err!("Reading tensor from {}, {:?}", filename, e))?;
    let mut data = String::new();
    file.read_to_string(&mut data)?;

    let mut lines = data.lines();
    let proto = parse_spec(symbol_table, lines.next().context("Empty data file")?)?;
    let shape = proto.shape.concretize().unwrap();

    let values = lines.flat_map(|l| l.split_whitespace()).collect::<Vec<&str>>();

    // We know there is at most one streaming dimension, so we can deduce the
    // missing value with a simple division.
    let product: usize = shape.iter().map(|o| o.to_usize().unwrap_or(1)).product();
    let missing = values.len() / product;

    let shape: Vec<_> = shape.iter().map(|d| d.to_usize().unwrap_or(missing)).collect();
    dispatch_numbers!(parse_values(proto.datum_type.concretize().unwrap())(&*shape, values))
}

/// Parses the `data` command-line argument.
pub fn for_data(
    symbol_table: &SymbolTable,
    filename: &str,
) -> TractResult<(Option<String>, InferenceFact)> {
    #[allow(unused_imports)]
    use std::convert::TryFrom;
    if filename.ends_with(".pb") {
        #[cfg(feature = "onnx")]
        {
            let file =
                fs::File::open(filename).with_context(|| format!("Can't open {:?}", filename))?;
            let proto = ::tract_onnx::tensor::proto_from_reader(file)?;
            Ok((
                Some(proto.name.to_string()).filter(|s| !s.is_empty()),
                Tensor::try_from(proto)?.into(),
            ))
        }
        #[cfg(not(feature = "onnx"))]
        {
            panic!("Loading tensor from protobuf requires onnx features");
        }
    } else if filename.contains(".npz:") {
        let mut tokens = filename.split(':');
        let (filename, inner) = (tokens.next().unwrap(), tokens.next().unwrap());
        let mut npz = ndarray_npy::NpzReader::new(std::fs::File::open(filename)?)?;
        Ok((None, for_npz(&mut npz, inner)?.into()))
    } else {
        Ok((None, tensor_for_text_data(symbol_table, filename)?.into()))
    }
}

pub fn for_npz(npz: &mut ndarray_npy::NpzReader<fs::File>, name: &str) -> TractResult<Tensor> {
    if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<f32>, tract_ndarray::IxDyn>(name) {
        return Ok(t.into_tensor());
    }
    if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<f64>, tract_ndarray::IxDyn>(name) {
        return Ok(t.into_tensor());
    }
    if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<i8>, tract_ndarray::IxDyn>(name) {
        return Ok(t.into_tensor());
    }
    if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<i16>, tract_ndarray::IxDyn>(name) {
        return Ok(t.into_tensor());
    }
    if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<i32>, tract_ndarray::IxDyn>(name) {
        return Ok(t.into_tensor());
    }
    if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<i64>, tract_ndarray::IxDyn>(name) {
        return Ok(t.into_tensor());
    }
    if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<u8>, tract_ndarray::IxDyn>(name) {
        return Ok(t.into_tensor());
    }
    if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<u16>, tract_ndarray::IxDyn>(name) {
        return Ok(t.into_tensor());
    }
    if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<u32>, tract_ndarray::IxDyn>(name) {
        return Ok(t.into_tensor());
    }
    if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<u64>, tract_ndarray::IxDyn>(name) {
        return Ok(t.into_tensor());
    }
    if let Ok(t) = npz.by_name::<tract_ndarray::OwnedRepr<bool>, tract_ndarray::IxDyn>(name) {
        return Ok(t.into_tensor());
    }
    bail!("Can not extract tensor from {}", name);
}

pub fn for_string(
    symbol_table: &SymbolTable,
    value: &str,
) -> TractResult<(Option<String>, InferenceFact)> {
    if let Some(stripped) = value.strip_prefix('@') {
        for_data(symbol_table, stripped)
    } else {
        let (name, value) = if value.contains(':') {
            let mut splits = value.split(':');
            (Some(splits.next().unwrap().to_string()), splits.next().unwrap())
        } else {
            (None, value)
        };
        if value.contains('=') {
            let mut split = value.split('=');
            let spec = parse_spec(symbol_table, split.next().unwrap())?;
            let value = split.next().unwrap().split(',');
            let dt = spec
                .datum_type
                .concretize()
                .context("Must specify type when giving tensor value")?;
            let shape = spec
                .shape
                .as_concrete_finite()?
                .context("Must specify concrete shape when giving tensor value")?;
            let tensor = dispatch_numbers!(parse_values(dt)(&*shape, value.collect()))?;
            Ok((name, tensor.into()))
        } else {
            Ok((name, parse_spec(symbol_table, value)?))
        }
    }
}