pub fn tensor_for_fact(
    fact: &TypedFact,
    streaming_dim: Option<usize>,
    tv: Option<&TensorValues>
) -> TractResult<Tensor>
Examples found in repository?
src/tensor.rs (line 366)
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
pub fn retrieve_or_make_inputs(
    tract: &dyn Model,
    params: &RunParams,
) -> TractResult<Vec<TVec<TValue>>> {
    let mut tmp: TVec<Vec<TValue>> = tvec![];
    for (ix, input) in tract.input_outlets().iter().enumerate() {
        let name = tract.node_name(input.node);
        let fact = tract.outlet_typedfact(*input)?;
        if let Some(mut value) = params.tensors_values.by_name(name).and_then(|t| t.values.clone())
        {
            if !value[0].datum_type().is_quantized()
                && fact.datum_type.is_quantized()
                && value[0].datum_type() == fact.datum_type.unquantized()
            {
                value = value
                    .iter()
                    .map(|v| {
                        let mut v = v.clone().into_tensor();
                        unsafe { v.set_datum_type(fact.datum_type) };
                        v.into()
                    })
                    .collect();
            }
            if TypedFact::from(&*value[0]).compatible_with(&fact) {
                info!("Using fixed input for input called {} ({} turn(s))", name, value.len());
                tmp.push(value.iter().map(|t| t.clone().into_tensor().into()).collect())
            } else if fact.datum_type == f16::datum_type()
                && value[0].datum_type() == f32::datum_type()
                && params.allow_float_casts
            {
                tmp.push(
                    value.iter().map(|t| t.cast_to::<f16>().unwrap().into_owned().into()).collect(),
                )
            } else if value.len() == 1 && tract.properties().contains_key("pulse.delay") {
                let value = &value[0];
                let input_pulse_axis = tract
                    .properties()
                    .get("pulse.input_axes")
                    .context("Expect pulse.input_axes property")?
                    .cast_to::<i64>()?
                    .as_slice::<i64>()?[ix] as usize;
                let input_pulse = fact.shape.get(input_pulse_axis).unwrap().to_usize().unwrap();
                let input_len = value.shape()[input_pulse_axis];

                // how many pulses do we need to push full result out ?
                // guess by looking at len and delay of the first output
                let output_pulse_axis = tract
                    .properties()
                    .get("pulse.output_axes")
                    .context("Expect pulse.output_axes property")?
                    .cast_to::<i64>()?
                    .as_slice::<i64>()?[0] as usize;
                let output_fact = tract.outlet_typedfact(tract.output_outlets()[0])?;
                let output_pulse =
                    output_fact.shape.get(output_pulse_axis).unwrap().to_usize().unwrap();
                let output_len = input_len * output_pulse / input_pulse;
                let output_delay = tract.properties()["pulse.delay"].as_slice::<i64>()?[0] as usize;
                let last_frame = output_len + output_delay;
                let needed_pulses = last_frame.divceil(output_pulse);
                let mut values = vec![];
                for ix in 0..needed_pulses {
                    let mut t =
                        Tensor::zero_dt(fact.datum_type, fact.shape.as_concrete().unwrap())?;
                    let start = ix * input_pulse;
                    let end = (start + input_pulse).min(input_len);
                    if end > start {
                        t.assign_slice(0..end - start, value, start..end, input_pulse_axis)?;
                    }
                    values.push(t.into());
                }
                info!(
                    "Generated {} pulses of shape {:?} for input {}.",
                    needed_pulses, fact.shape, ix
                );
                tmp.push(values);
            } else {
                bail!("For input {}, can not reconcile model input fact {:?} with provided input {:?}", name, fact, value[0]);
            };
        } else if params.allow_random_input {
            let fact = tract.outlet_typedfact(*input)?;
            warn_once(format!("Using random input for input called {:?}: {:?}", name, fact));
            let tv = params
                .tensors_values
                .by_name(name)
                .or_else(|| params.tensors_values.by_input_ix(ix));
            tmp.push(vec![crate::tensor::tensor_for_fact(&fact, None, tv)?.into()]);
        } else {
            bail!("Unmatched tensor {}. Fix the input or use \"--allow-random-input\" if this was intended", name);
        }
    }
    Ok((0..tmp[0].len()).map(|turn| tmp.iter().map(|t| t[turn].clone()).collect()).collect())
}

fn make_inputs(values: &[impl std::borrow::Borrow<TypedFact>]) -> TractResult<TVec<TValue>> {
    values.iter().map(|v| tensor_for_fact(v.borrow(), None, None).map(|t| t.into())).collect()
}