1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
use crate::infer::*; use crate::internal::*; pub use tract_core::ops::nn::ArgMaxMin; impl InferenceRulesOp for ArgMaxMin { fn rules<'r, 'p: 'r, 's: 'r>( &'s self, s: &mut Solver<'r>, inputs: &'p [TensorProxy], outputs: &'p [TensorProxy], ) -> InferenceResult { check_input_arity(&inputs, 1)?; check_output_arity(&outputs, 1)?; s.equals(&outputs[0].datum_type, DatumType::I64)?; if self.keepdims { s.equals(&outputs[0].rank, &inputs[0].rank)?; for i in 0..self.axis { s.equals(&outputs[0].shape[i], &inputs[0].shape[i])?; } s.equals(&outputs[0].shape[self.axis], 1.to_dim())?; s.given(&inputs[0].rank, move |s, rank| { for i in (self.axis + 1)..(rank as usize) { s.equals(&outputs[0].shape[i], &inputs[0].shape[i])?; } Ok(()) })?; } else { s.equals(&outputs[0].rank, inputs[0].rank.bex() - 1)?; for i in 0..self.axis { s.equals(&outputs[0].shape[i], &inputs[0].shape[i])?; } s.given(&inputs[0].rank, move |s, rank| { for i in (self.axis + 1)..(rank as usize - 1) { s.equals(&outputs[0].shape[i], &inputs[0].shape[i + 1])?; } Ok(()) })?; }; Ok(()) } as_op!(); to_typed!(); }