1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
use super::Factoid;
use crate::infer::*;
use std::fmt;
use tract_data::UndeterminedSymbol;
tract_core::dyn_clone::clone_trait_object!(InferenceOp);
/// An operation with tensor type inference
pub trait InferenceOp: Op {
/// Infers properties about the input and output tensors.
///
/// The `inputs` and `outputs` arguments correspond to properties about
/// the input and output tensors that are already known.
///
/// The default implementation will call the private infer_facts method,
/// which is usually implemented using the InferenceRulesOp trait. It will
/// also try to eval() the op if its a EvalOp and if the inputs are
/// fully determined.
///
/// Returns Err in case of an unrecoverable error during the inference,
/// and the refined properties about the inputs and outputs otherwise.
fn infer(
&mut self,
inputs: TVec<&InferenceFact>,
outputs: TVec<&InferenceFact>,
observed: TVec<&InferenceFact>,
) -> TractResult<(TVec<InferenceFact>, TVec<InferenceFact>, TVec<InferenceFact>)> {
let (infered_inputs, infered_outputs, observed) =
self.infer_facts(inputs, outputs, observed).context("Infering facts")?;
if self.is_stateless() && infered_inputs.iter().all(|i| i.value.is_concrete()) {
let input_values = infered_inputs
.iter()
.map(|i| i.value.concretize().unwrap().into_tvalue())
.collect(); // checked
match self.eval(input_values) {
Ok(values) => {
let output_values =
values.into_iter().map(|t| t.into_tensor().into()).collect::<TVec<_>>();
return Ok((infered_inputs, output_values, observed));
}
Err(e) if e.root_cause().downcast_ref::<UndeterminedSymbol>().is_some() => (),
Err(e) => return Err(e).context("Eager eval during inference"),
}
}
Ok((infered_inputs, infered_outputs, observed))
}
/// Allow an op to specify a supplementary list of outlets facts that
/// will trigger inference again.
fn observe_outlets(
&self,
_model: &InferenceModel,
_node: &InferenceNode,
) -> TractResult<Vec<OutletId>> {
Ok(vec![])
}
/// Infer properties about inputs and output tensors. This method does not
/// need to deal with the "trivial" stateless op with fully determined
/// inputs cases.
///
/// Most of the time, it is implemented using InferenceRulesOp.
fn infer_facts(
&mut self,
inputs: TVec<&InferenceFact>,
outputs: TVec<&InferenceFact>,
observed: TVec<&InferenceFact>,
) -> TractResult<(TVec<InferenceFact>, TVec<InferenceFact>, TVec<InferenceFact>)>;
/// Early pass on inference model, after analyse, but before translation to
/// typed network. Meant to deal with some framework idiosyncrasies that
/// manifest with temporaries nodes that can run some form of inference but
/// require refactoring the network before it can be evaluated.
///
/// Called after succesful analyse, but before translating to typed model.
#[allow(unused_variables)]
fn incorporate(
&self,
model: &InferenceModel,
node: &InferenceNode,
) -> TractResult<Option<InferenceModelPatch>> {
Ok(None)
}
fn nboutputs(&self) -> TractResult<usize> {
Ok(1)
}
/// Reinterpret the InferenceOp as an Op.
fn as_op(&self) -> &dyn Op;
/// Reinterpret the InferenceOp as an Op, mutably.
fn as_op_mut(&mut self) -> &mut dyn Op;
/// Called during translation to TypedModel.
#[allow(unused_variables)]
fn to_typed(
&self,
source: &InferenceModel,
node: &InferenceNode,
target: &mut TypedModel,
mapping: &HashMap<OutletId, OutletId>,
) -> TractResult<TVec<OutletId>> {
bail!("Operator can not be made a TypedOp.")
}
}
impl std::fmt::Display for Box<dyn InferenceOp> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "{}", self.name())
}
}
impl<O: InferenceOp> From<O> for Box<dyn InferenceOp> {
fn from(it: O) -> Box<dyn InferenceOp> {
Box::new(it)
}
}
impl AsRef<dyn Op> for dyn InferenceOp {
fn as_ref(&self) -> &dyn Op {
self.as_op()
}
}
impl AsRef<dyn Op> for Box<dyn InferenceOp> {
fn as_ref(&self) -> &dyn Op {
self.as_op()
}
}
impl AsMut<dyn Op> for dyn InferenceOp {
fn as_mut(&mut self) -> &mut dyn Op {
self.as_op_mut()
}
}
impl AsMut<dyn Op> for Box<dyn InferenceOp> {
fn as_mut(&mut self) -> &mut dyn Op {
self.as_op_mut()
}
}