1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
use crate::infer::*; use crate::internal::*; use tract_core::ops as mir; pub use tract_core::ops::binary::wire_rank_broadcast; use tract_core::ops::binary::BinMiniOp; #[derive(Debug, Clone, Hash)] pub struct InferenceBinOp(pub Box<dyn BinMiniOp>); impl_dyn_hash!(InferenceBinOp); impl Expansion for InferenceBinOp { fn name(&self) -> Cow<str> { self.0.name().into() } fn validation(&self) -> Validation { self.0.validation() } op_hir!(); fn rules<'r, 'p: 'r, 's: 'r>( &'s self, s: &mut Solver<'r>, inputs: &'p [TensorProxy], outputs: &'p [TensorProxy], ) -> InferenceResult { rules(s, inputs, outputs, move |typa, typb| self.0.result_datum_type(typa, typb)) } fn wire( &self, prefix: &str, target: &mut TypedModel, inputs: &[OutletId], ) -> TractResult<TVec<OutletId>> { let operating_datum_type = self.0.operating_datum_type( target.outlet_fact(inputs[0])?.datum_type, target.outlet_fact(inputs[1])?.datum_type, )?; let wires = wire_rank_broadcast(prefix, target, inputs)?; let wires = wire_cast(prefix, target, &wires, operating_datum_type)?; target.wire_node(prefix, mir::binary::TypedBinOp(self.0.clone()), &wires) } } pub fn rules<'r, 'p: 'r, 's: 'r, DT: Fn(DatumType, DatumType) -> TractResult<DatumType> + 'p>( s: &mut Solver<'r>, inputs: &'p [TensorProxy], outputs: &'p [TensorProxy], dt: DT, ) -> InferenceResult { check_input_arity(&inputs, 2)?; check_output_arity(&outputs, 1)?; s.with(&inputs[0].shape, move |s, a_shape| { s.with(&inputs[1].shape, move |s, b_shape| { if let Ok(Some(c_shape)) = crate::infer::helpers::infer_shape_broadcasting(&[&a_shape, &b_shape]) { s.equals(&outputs[0].shape, c_shape)?; } Ok(()) }) })?; s.given_2(&inputs[0].datum_type, &inputs[1].datum_type, move |s, typa, typb| { s.equals(&outputs[0].datum_type, dt(typa, typb)?) })?; Ok(()) } pub fn wire_cast( prefix: &str, target: &mut TypedModel, inputs: &[OutletId], operating_datum_type: DatumType, ) -> TractResult<TVec<OutletId>> { let facts = [target.outlet_fact(inputs[0])?.clone(), target.outlet_fact(inputs[1])?.clone()]; let mut wires = tvec!(); for i in 0..inputs.len() { let mut wire = inputs[i]; if facts[i].datum_type != operating_datum_type { wire = target.wire_node( format!("{}.cast-{}", prefix, i), mir::cast::cast(operating_datum_type), &[wire], )?[0]; } wires.push(wire); } Ok(wires) } pub trait IntoHir { fn into_hir(self) -> Box<dyn InferenceOp>; } impl<B: BinMiniOp> IntoHir for B { fn into_hir(self) -> Box<dyn InferenceOp> { expand(InferenceBinOp(Box::new(self) as _)) } } #[derive(Debug, Clone, Hash)] pub struct Nary(pub Box<dyn mir::binary::BinMiniOp>, pub bool); impl_dyn_hash!(Nary); impl Nary { fn normalize_t<T>(t: &mut Tensor, n: usize) -> TractResult<()> where T: Datum + std::ops::DivAssign<T> + Copy, usize: tract_num_traits::AsPrimitive<T>, { use tract_num_traits::AsPrimitive; let mut t = t.to_array_view_mut::<T>()?; let n: T = n.as_(); t /= &tract_ndarray::arr0(n); Ok(()) } } impl Op for Nary { fn name(&self) -> Cow<str> { format!("{}Nary", self.0.name()).into() } fn validation(&self) -> Validation { self.0.validation() } op_hir!(); not_a_typed_op!(); } impl EvalOp for Nary { fn is_stateless(&self) -> bool { true } fn eval(&self, inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> { let mut t = inputs[0].clone().into_tensor(); for i in inputs[1..].into_iter() { let mut i = i.clone(); let operating_datum_type = self.0.operating_datum_type(t.datum_type(), i.datum_type())?; if i.datum_type() != operating_datum_type { i = i.cast_to_dt(operating_datum_type)?.into_owned().into_arc_tensor(); } if t.datum_type() != operating_datum_type { t = t.cast_to_dt(operating_datum_type)?.into_owned(); } t = self.0.eval(t.into_arc_tensor(), i.into_arc_tensor())?; } if self.1 { dispatch_numbers!(Self::normalize_t(t.datum_type())(&mut t, inputs.len()))?; } Ok(tvec!(t.into_arc_tensor())) } } impl InferenceRulesOp for Nary { fn rules<'r, 'p: 'r, 's: 'r>( &'s self, s: &mut Solver<'r>, inputs: &'p [TensorProxy], outputs: &'p [TensorProxy], ) -> InferenceResult { check_output_arity(&outputs, 1)?; s.equals(&inputs[0].datum_type, &outputs[0].datum_type)?; let n = inputs.len(); s.equals_all((0..n).map(|i| (&inputs[i].datum_type).bex()).collect())?; s.given_all(inputs.iter().map(|i| &i.shape), move |s, shapes: Vec<TVec<TDim>>| { let out = tract_core::broadcast::multi_broadcast(&*shapes) .with_context(|| format!("Failed to broadcast {:?}", &shapes))?; s.equals(&outputs[0].shape, ShapeFactoid::from(out)) }) } fn to_typed( &self, _source: &InferenceModel, node: &InferenceNode, target: &mut TypedModel, mapping: &HashMap<OutletId, OutletId>, ) -> TractResult<TVec<OutletId>> { let inputs = node.inputs.iter().map(|i| mapping[i]).collect::<Vec<_>>(); let mut wire = inputs[0]; for (ix, i) in inputs[1..].iter().enumerate() { let wires = wire_rank_broadcast(&format!("{}.{}", node.name, ix), target, &[wire, *i])?; wire = target.wire_node( format!("{}.{}", node.name, ix), mir::binary::TypedBinOp(self.0.clone()), &wires, )?[0]; } if self.1 { let n = tensor0(inputs.len() as i32) .cast_to_dt(node.outputs[0].fact.datum_type.concretize().unwrap())? .into_owned() .broadcast_into_rank(target.outlet_fact(inputs[0])?.rank())?; let n = target.add_const(format!("{}.n", node.name), n.into_arc_tensor())?; wire = target.wire_node( format!("{}.norm", node.name), crate::ops::math::div::bin_typed(), [wire, n.into()].as_ref(), )?[0]; } Ok(tvec!(wire)) } as_op!(); }