tract_data/dim/
tree.rs

1use crate::dim::Assertion;
2use crate::internal::*;
3
4use super::{sym::*, DimLike};
5use itertools::Itertools;
6use num_integer::Integer;
7use num_traits::{AsPrimitive, PrimInt, Zero};
8use std::cmp::Ordering;
9use std::collections::{HashMap, HashSet};
10use std::fmt::Debug;
11use std::ops::Neg;
12use std::{fmt, ops};
13
14#[derive(Debug)]
15pub enum TooEarly {
16    UndeterminedSymbol(TDim),
17    Other(String),
18}
19
20impl std::fmt::Display for TooEarly {
21    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
22        match self {
23            TooEarly::UndeterminedSymbol(s) => write!(f, "Undetermined symbol in expression: {s}"),
24            TooEarly::Other(s) => write!(f, "{s}"),
25        }
26    }
27}
28
29impl std::error::Error for TooEarly {}
30
31macro_rules! b( ($e:expr) => { Box::new($e) } );
32
33#[derive(Clone, PartialEq, Eq, Hash, Debug)]
34pub enum TDim {
35    Val(i64),
36    Sym(Symbol),
37    Add(Vec<TDim>),
38    Mul(Vec<TDim>),
39    MulInt(i64, Box<TDim>),
40    Div(Box<TDim>, u64),
41    Broadcast(Vec<TDim>),
42    Min(Vec<TDim>),
43    Max(Vec<TDim>),
44}
45
46use TDim::*;
47
48fn tdim_lexi_order(a: &TDim, b: &TDim) -> Ordering {
49    match (a, b) {
50        (Sym(a), Sym(b)) => a.cmp(b),
51        (Val(a), Val(b)) => a.cmp(b),
52        (Add(a), Add(b))
53        | (Mul(a), Mul(b))
54        | (Broadcast(a), Broadcast(b))
55        | (Min(a), Min(b))
56        | (Max(a), Max(b)) => a.len().cmp(&b.len()).then(
57            a.iter()
58                .zip(b.iter())
59                .fold(Ordering::Equal, |acc, (a, b)| acc.then_with(|| tdim_lexi_order(a, b))),
60        ),
61        (MulInt(p, d), MulInt(q, e)) => p.cmp(q).then_with(|| tdim_lexi_order(d, e)),
62        (Div(d, p), Div(e, q)) => p.cmp(q).then_with(|| tdim_lexi_order(d, e)),
63        (Sym(_), _) => Ordering::Less,
64        (_, Sym(_)) => Ordering::Greater,
65        (Val(_), _) => Ordering::Less,
66        (_, Val(_)) => Ordering::Greater,
67        (Add(_), _) => Ordering::Less,
68        (_, Add(_)) => Ordering::Greater,
69        (Mul(_), _) => Ordering::Less,
70        (_, Mul(_)) => Ordering::Greater,
71        (MulInt(_, _), _) => Ordering::Less,
72        (_, MulInt(_, _)) => Ordering::Greater,
73        (Broadcast(_), _) => Ordering::Less,
74        (_, Broadcast(_)) => Ordering::Greater,
75        (Min(_), _) => Ordering::Less,
76        (_, Min(_)) => Ordering::Greater,
77        (Max(_), _) => Ordering::Less,
78        (_, Max(_)) => Ordering::Greater,
79    }
80}
81
82impl fmt::Display for TDim {
83    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
84        match &self {
85            Sym(sym) => write!(fmt, "{sym}"),
86            Val(it) => write!(fmt, "{it}"),
87            Add(it) => write!(fmt, "{}", it.iter().map(|x| format!("{x}")).join("+")),
88            Mul(it) => write!(fmt, "{}", it.iter().map(|x| format!("({x})")).join("*")),
89            Broadcast(it) => write!(fmt, "{}", it.iter().map(|x| format!("({x})")).join("#")),
90            Min(it) => write!(fmt, "min({})", it.iter().map(|x| format!("{x}")).join(",")),
91            Max(it) => write!(fmt, "max({})", it.iter().map(|x| format!("{x}")).join(",")),
92            MulInt(a, b) => write!(fmt, "{a}*{b}"),
93            Div(a, b) => write!(fmt, "({a})/{b}"),
94        }
95    }
96}
97
98impl TDim {
99    #[inline]
100    pub fn is_one(&self) -> bool {
101        matches!(self, Val(1))
102    }
103
104    #[inline]
105    pub fn to_i64(&self) -> TractResult<i64> {
106        if let Val(v) = self {
107            Ok(*v)
108        } else {
109            Err(TooEarly::UndeterminedSymbol(self.clone()).into())
110        }
111    }
112
113    #[inline]
114    pub fn as_i64(&self) -> Option<i64> {
115        if let Val(v) = self {
116            Some(*v)
117        } else {
118            None
119        }
120    }
121
122    pub fn eval_to_i64(&self, values: &SymbolValues) -> TractResult<i64> {
123        match self {
124            Sym(sym) => {
125                let Some(v) = values.get(sym) else {
126                    bail!(TooEarly::UndeterminedSymbol(self.clone()))
127                };
128                Ok(v)
129            }
130            Val(v) => Ok(*v),
131            Add(terms) => {
132                terms.iter().try_fold(0, |acc, it| it.eval_to_i64(values).map(|x| acc + x))
133            }
134            Mul(terms) => {
135                terms.iter().try_fold(1, |acc, it| it.eval_to_i64(values).map(|x| acc * x))
136            }
137            Min(terms) => terms
138                .iter()
139                .try_fold(i64::MAX, |acc, it| it.eval_to_i64(values).map(|x| acc.min(x))),
140            Max(terms) => terms
141                .iter()
142                .try_fold(i64::MIN, |acc, it| it.eval_to_i64(values).map(|x| acc.max(x))),
143            Broadcast(terms) => terms.iter().try_fold(1i64, |acc, it| {
144                it.eval_to_i64(values)
145                    .and_then(|x| ((acc as usize).broadcast(x as usize)).map(|x| x as i64))
146            }),
147            Div(a, q) => Ok(a.eval_to_i64(values)? / *q as i64),
148            MulInt(p, a) => Ok(a.eval_to_i64(values)? * *p),
149        }
150    }
151
152    pub fn eval(&self, values: &SymbolValues) -> TDim {
153        match self {
154            Sym(sym) => values.get(sym).map(Val).unwrap_or_else(|| Sym(sym.clone())),
155            Val(v) => Val(*v),
156            Add(terms) => terms.iter().fold(Val(0), |acc, it| -> TDim { acc + it.eval(values) }),
157            Mul(terms) => terms.iter().fold(Val(1), |acc, it| -> TDim { acc * it.eval(values) }),
158            Min(terms) => {
159                terms.iter().fold(Val(i64::MAX), |acc, it| -> TDim { acc.mini(it.eval(values)) })
160            }
161            Max(terms) => {
162                terms.iter().fold(Val(i64::MIN), |acc, it| -> TDim { acc.maxi(it.eval(values)) })
163            }
164            Broadcast(terms) => terms.iter().fold(Val(1), |acc, it| -> TDim {
165                acc.broadcast(it.eval(values)).unwrap_or_else(|_| self.clone())
166            }),
167            Div(a, q) => a.eval(values) / *q as i64,
168            MulInt(p, a) => a.eval(values) * *p,
169        }
170    }
171
172    pub fn eval_with_scenario(&self, scenario: &str) -> TDim {
173        if let Val(v) = self {
174            return Val(*v);
175        }
176        let scope = self.find_scope().unwrap();
177        let scope = scope.0;
178        let locked = scope.lock();
179        let scope = locked.borrow();
180        self.clone().simplify_rec(&scope, Some(scenario))
181    }
182
183    pub fn substitute(&self, from: &Symbol, to: &Self) -> TractResult<Self> {
184        match self {
185            Sym(sym) => Ok(if sym == from { to.clone() } else { self.clone() }),
186            Val(v) => Ok(Val(*v)),
187            Add(terms) => terms.iter().try_fold(Val(0), |acc, it| -> TractResult<TDim> {
188                Ok(acc + it.substitute(from, to)?)
189            }),
190            Mul(terms) => terms.iter().try_fold(Val(1), |acc, it| -> TractResult<TDim> {
191                Ok(acc * it.substitute(from, to)?)
192            }),
193            Broadcast(terms) => terms.iter().try_fold(Val(1), |acc, it| -> TractResult<TDim> {
194                acc.broadcast(it.substitute(from, to)?)
195            }),
196            Min(terms) => terms.iter().try_fold(Val(i64::MAX), |acc, it| -> TractResult<TDim> {
197                Ok(acc.mini(it.substitute(from, to)?))
198            }),
199            Max(terms) => terms.iter().try_fold(Val(i64::MIN), |acc, it| -> TractResult<TDim> {
200                Ok(acc.maxi(it.substitute(from, to)?))
201            }),
202            Div(a, q) => Ok(a.substitute(from, to)? / *q as i64),
203            MulInt(p, a) => Ok(a.substitute(from, to)? * *p),
204        }
205    }
206
207    pub fn reduce(self) -> TDim {
208        self.simplify()
209            .wiggle()
210            .into_iter()
211            .sorted_by(tdim_lexi_order)
212            .unique()
213            .map(|e| e.simplify())
214            .min_by_key(|e| e.cost())
215            .unwrap()
216    }
217
218    fn cost(&self) -> usize {
219        use self::TDim::*;
220        match self {
221            Sym(_) | Val(_) => 1,
222            Add(terms) => 2 * terms.iter().map(TDim::cost).sum::<usize>(),
223            Mul(terms) => 3 * terms.iter().map(TDim::cost).sum::<usize>(),
224            Broadcast(terms) => 4 * terms.iter().map(TDim::cost).sum::<usize>(),
225            Min(terms) | Max(terms) => 5 * terms.iter().map(TDim::cost).sum::<usize>(),
226            Div(a, _) => 3 * a.cost(),
227            MulInt(_, a) => 2 * a.cost(),
228        }
229    }
230
231    fn wiggle(&self) -> Vec<TDim> {
232        use self::TDim::*;
233        match self {
234            Sym(_) | Val(_) | Mul(_) | Broadcast(_) | Min(_) | Max(_) => vec![self.clone()],
235            Add(terms) => {
236                let mut forms = vec![];
237                let sub_exprs = terms.iter().map(|e| e.wiggle()).multi_cartesian_product();
238
239                fn first_div_term(terms: &[TDim]) -> Option<(usize, &TDim, u64)> {
240                    terms.iter().enumerate().find_map(|(index, t)| match t {
241                        Div(numerator, quotient) => Some((index, &**numerator, *quotient)),
242                        _ => None,
243                    })
244                }
245
246                fn generate_new_numerator(
247                    div_index: usize,
248                    numerator: &TDim,
249                    quotient: u64,
250                    expr: &[TDim],
251                ) -> Vec<TDim> {
252                    expr.iter()
253                        .enumerate()
254                        .map(|(index, term)| {
255                            if index == div_index {
256                                numerator.clone()
257                            } else {
258                                MulInt(quotient as i64, Box::new(term.clone()))
259                            }
260                        })
261                        .collect()
262                }
263
264                for expr in sub_exprs {
265                    if let Some((div_index, numerator, quotient)) = first_div_term(&expr) {
266                        let new_numerator =
267                            generate_new_numerator(div_index, numerator, quotient, &expr);
268                        forms.push(Div(Box::new(Add(new_numerator)), quotient))
269                    }
270
271                    forms.push(Add(expr));
272                }
273                forms
274            }
275            MulInt(p, a) => a.wiggle().into_iter().map(|a| MulInt(*p, b!(a))).collect(),
276            Div(a, q) => {
277                let mut forms = vec![];
278                for num in a.wiggle() {
279                    if let Add(terms) = &num {
280                        let (integer, non_integer): (Vec<_>, Vec<_>) =
281                            terms.iter().cloned().partition(|a| a.gcd() % q == 0);
282                        let mut new_terms = integer.iter().map(|i| i.div(*q)).collect::<Vec<_>>();
283                        if non_integer.len() > 0 {
284                            new_terms.push(Div(b!(Add(non_integer)), *q));
285                        }
286                        forms.push(Add(new_terms))
287                    }
288                    forms.push(Div(b!(num), *q))
289                }
290                forms
291            }
292        }
293    }
294
295    fn find_any_sym(tdim: &TDim) -> Option<&Symbol> {
296        match tdim {
297            Val(_) => None,
298            Sym(s) => Some(s),
299            Add(terms) | Mul(terms) | Min(terms) | Max(terms) | Broadcast(terms) => {
300                terms.iter().find_map(Self::find_any_sym)
301            }
302            MulInt(_, t) | Div(t, _) => Self::find_any_sym(t),
303        }
304    }
305
306    pub fn find_scope(&self) -> Option<SymbolScope> {
307        Self::find_any_sym(self).and_then(|s| s.scope().clone())
308    }
309
310    pub fn simplify(self) -> TDim {
311        use self::TDim::*;
312        if let Ok(v) = self.eval_to_i64(&SymbolValues::default()) {
313            return Val(v);
314        }
315        let Some(scope) = self.find_scope() else {
316            return self;
317        };
318        let scope = scope.0;
319        let locked = scope.lock();
320        let scope = locked.borrow();
321        let it = self.simplify_rec(&scope, None);
322        let mut current: Option<TDim> = None;
323        for scenario in scope.scenarios() {
324            let v = it.clone().simplify_rec(&scope, Some(scenario));
325            if current.is_some_and(|c| c != v) {
326                return it;
327            } else {
328                current = Some(v);
329            }
330        }
331        current.unwrap_or(it)
332    }
333
334    fn simplify_rec(self, scope: &SymbolScopeData, scenario: Option<&str>) -> TDim {
335        match self {
336            Add(mut terms) => {
337                #[allow(clippy::mutable_key_type)]
338                let mut simplified_terms: HashMap<TDim, i64> = HashMap::new();
339                // factorize common sub-expr
340                while let Some(term) = terms.pop() {
341                    let simplified = term.simplify_rec(scope, scenario);
342                    match simplified {
343                        Val(0) => {} // ignore
344                        Add(members) => {
345                            terms.extend(members);
346                            continue;
347                        }
348                        Val(value) => *simplified_terms.entry(Val(1)).or_insert(0) += value,
349                        MulInt(value, factor) => {
350                            *simplified_terms.entry((*factor).clone()).or_insert(0) += value;
351                        }
352                        n => *simplified_terms.entry(n).or_insert(0) += 1,
353                    };
354                }
355
356                pub fn evaluate_count(term: TDim, count: i64) -> Option<TDim> {
357                    match count {
358                        0 => None,
359                        _ if term == TDim::Val(1) => Some(TDim::Val(count)),
360                        1 => Some(term),
361                        _ => Some(TDim::MulInt(count, Box::new(term))),
362                    }
363                }
364
365                let mut members: Vec<TDim> = simplified_terms
366                    .into_iter()
367                    .filter_map(|(term, count)| evaluate_count(term, count))
368                    .collect();
369                members.sort_by(tdim_lexi_order);
370
371                match members.len() {
372                    0 => TDim::Val(0),
373                    1 => members.into_iter().next().unwrap(),
374                    _ => TDim::Add(members),
375                }
376            }
377            Mul(terms) => {
378                let mut gcd = Mul(terms.clone()).gcd() as i64;
379                if gcd == 0 {
380                    return Val(0);
381                }
382                let mut terms = if gcd != 1 {
383                    terms
384                        .into_iter()
385                        .map(|t| {
386                            let gcd = t.gcd();
387                            (t / gcd).simplify_rec(scope, scenario)
388                        })
389                        .collect()
390                } else {
391                    terms
392                };
393                if terms.iter().filter(|t| t == &&Val(-1)).count() % 2 == 1 {
394                    gcd = -gcd;
395                }
396                terms.retain(|t| !t.is_one() && t != &Val(-1));
397                terms.sort_by(tdim_lexi_order);
398                match (gcd, terms.len()) {
399                    (_, 0) => Val(gcd), // Case #1: If 0 variables, return product
400                    (0, _) => Val(0),   // Case #2: Result is 0 if coef is 0 (actually
401                    // unreachable as we check at the beginning)
402                    (1, 1) => terms.remove(0), // Case #3: Product is 1, so return the only term
403                    (1, _) => Mul(terms), // Case #4: Product is 1, so return the non-integer terms
404                    (_, 1) => MulInt(gcd, Box::new(terms.remove(0))), // Case #5: Single variable, convert to 1 MulInt
405                    _ => MulInt(gcd, Box::new(Mul(terms))), // Case #6: Multiple variables, convert to MulInt
406                }
407            }
408            MulInt(coef, expr) => {
409                match *expr {
410                    MulInt(c2, inner) => {
411                        return MulInt(coef * c2, inner).simplify_rec(scope, scenario)
412                    }
413                    Val(v) => return Val(coef * v),
414                    _ => {}
415                }
416
417                let simplified = expr.simplify_rec(scope, scenario);
418                match (coef, simplified) {
419                    (0, _) => Val(0), // Case #1: If coef is 0, return 0
420                    (1, s) => s,      // Case #2: If coef is 1, return the simplified expression
421                    (_, Add(terms)) => Add(terms
422                        .into_iter()
423                        .map(|term| MulInt(coef, Box::new(term)).simplify_rec(scope, scenario))
424                        .collect()), // Case #3: If expression is an addition, distribute the coef
425                    (c, Val(v)) => Val(c * v), // Case #4: If expression is a value, combine coefs
426                    (c, MulInt(v, inner)) => MulInt(c * v, inner), // Case #5: If expression is a MulInt, combine coefs
427                    (_, s) => MulInt(coef, Box::new(s)), // Case #6: Otherwise, return the original
428                }
429            }
430            Div(a, q) => {
431                if q == 1 {
432                    return a.simplify_rec(scope, scenario);
433                } else if let Div(a, q2) = *a {
434                    return Div(a, q * q2).simplify_rec(scope, scenario);
435                }
436                let a = a.simplify_rec(scope, scenario);
437                if let Val(a) = a {
438                    Val(a / q as i64)
439                } else if let MulInt(-1, a) = a {
440                    MulInt(-1, b!(Div(a, q)))
441                } else if let Add(mut terms) = a {
442                    if terms.iter().any(|t| {
443                        if let MulInt(-1, s) = t {
444                            matches!(&**s, Sym(_))
445                        } else {
446                            false
447                        }
448                    }) {
449                        MulInt(
450                            -1,
451                            b!(Div(
452                                b!(Add(terms.into_iter().map(|t| MulInt(-1, b!(t))).collect())
453                                    .simplify_rec(scope, scenario)),
454                                q
455                            )),
456                        )
457                    } else if let Some(v) =
458                        terms.iter().find_map(|t| if let Val(v) = t { Some(*v) } else { None })
459                    {
460                        let offset = if v >= q as i64 {
461                            Some(v / q as i64)
462                        } else if v < 0 {
463                            Some(-Integer::div_ceil(&-v, &(q as i64)))
464                        } else {
465                            None
466                        };
467                        if let Some(val) = offset {
468                            terms.push(Val(-val * q as i64));
469                            Add(vec![
470                                Val(val),
471                                Div(b!(Add(terms).simplify_rec(scope, scenario)), q),
472                            ])
473                        } else {
474                            Div(b!(Add(terms)), q)
475                        }
476                    } else {
477                        Div(b!(Add(terms)), q)
478                    }
479                } else if let MulInt(p, a) = a {
480                    if p == q as i64 {
481                        a.simplify()
482                    } else {
483                        let gcd = p.abs().gcd(&(q as i64));
484                        if gcd == p {
485                            Div(a, q / gcd as u64)
486                        } else if gcd == q as i64 {
487                            MulInt(p / gcd, a)
488                        } else if gcd > 1 {
489                            Div(b!(MulInt(p / gcd, a)), q / gcd as u64)
490                                .simplify_rec(scope, scenario)
491                        } else {
492                            Div(b!(MulInt(p, a)), q)
493                        }
494                    }
495                } else {
496                    Div(b!(a), q)
497                }
498            }
499            Broadcast(terms) => {
500                let mut terms: Vec<TDim> = terms
501                    .iter()
502                    .map(|s| s.clone().simplify_rec(scope, scenario))
503                    .flat_map(|t| if let Broadcast(t) = t { t } else { vec![t] })
504                    .filter(|t| !t.is_one())
505                    .sorted_by(tdim_lexi_order)
506                    .dedup()
507                    .collect_vec();
508                if terms.len() == 0 {
509                    Val(1)
510                } else if terms.len() == 1 {
511                    terms.remove(0)
512                } else {
513                    Broadcast(terms)
514                }
515            }
516
517            Min(terms) => {
518                let mut flatten: Vec<TDim> = terms
519                    .into_iter()
520                    .map(|t| t.simplify_rec(scope, scenario))
521                    .flat_map(|t| if let Min(t) = t { t } else { vec![t] })
522                    .sorted_by(tdim_lexi_order)
523                    .dedup()
524                    .collect();
525                #[allow(clippy::mutable_key_type)]
526                let mut redundant = HashSet::<TDim>::default();
527                for pair in flatten.iter().permutations(2) {
528                    let (a, b) = (pair[0], pair[1]);
529                    if redundant.contains(a) || redundant.contains(b) {
530                        continue;
531                    }
532                    let diff = a.clone() - b;
533                    if diff.as_i64().is_some_and(|i| i >= 0) || scope.prove_positive_or_zero(&diff)
534                    {
535                        redundant.insert(a.clone());
536                    }
537                }
538                flatten.retain(|t| !redundant.contains(t));
539                if flatten.len() == 0 {
540                    i64::MAX.to_dim()
541                } else if flatten.len() == 1 {
542                    flatten.into_iter().next().unwrap()
543                } else {
544                    Min(flatten)
545                }
546            }
547            Max(terms) => {
548                let mut flatten: Vec<TDim> = terms
549                    .into_iter()
550                    .map(|t| t.simplify_rec(scope, scenario))
551                    .flat_map(|t| if let Max(t) = t { t } else { vec![t] })
552                    .sorted_by(tdim_lexi_order)
553                    .dedup()
554                    .collect();
555                #[allow(clippy::mutable_key_type)]
556                let mut redundant = HashSet::<TDim>::default();
557                for pair in flatten.iter().permutations(2) {
558                    let (a, b) = (pair[0], pair[1]);
559                    if redundant.contains(a) || redundant.contains(b) {
560                        continue;
561                    }
562                    let diff = a.clone() - b;
563                    if diff.as_i64().is_some_and(|i| i >= 0) || scope.prove_positive_or_zero(&diff)
564                    {
565                        redundant.insert(b.clone());
566                    }
567                }
568                flatten.retain(|t| !redundant.contains(t));
569                if flatten.len() == 0 {
570                    i64::MIN.to_dim()
571                } else if flatten.len() == 1 {
572                    flatten.into_iter().next().unwrap()
573                } else {
574                    Max(flatten)
575                }
576            }
577            Sym(s) => scope
578                .assertions(scenario)
579                .find_map(|a| match a {
580                    Assertion::Eq(Sym(sym), v) if sym == &s => Some(v.clone()),
581                    _ => None,
582                })
583                .unwrap_or(Sym(s)),
584            Val(_) => self,
585        }
586    }
587
588    pub(super) fn inclusive_bound(&self, scope: &SymbolScopeData, upper: bool) -> Option<i64> {
589        use self::TDim::*;
590        match self {
591            Val(n) => Some(*n),
592            Sym(_) => {
593                if upper {
594                    scope
595                        .all_assertions()
596                        .iter()
597                        .filter_map(|assert| match &assert {
598                            Assertion::LT(left, right)
599                                if left == self && right.as_i64().is_some() =>
600                            {
601                                Some(right.as_i64().unwrap() - 1)
602                            }
603                            Assertion::LTE(left, right)
604                                if left == self && right.as_i64().is_some() =>
605                            {
606                                Some(right.as_i64().unwrap())
607                            }
608                            _ => None,
609                        })
610                        .min()
611                } else {
612                    scope
613                        .all_assertions()
614                        .iter()
615                        .filter_map(|assert| match &assert {
616                            Assertion::GT(left, right)
617                                if left == self && right.as_i64().is_some() =>
618                            {
619                                Some(right.as_i64().unwrap() + 1)
620                            }
621                            Assertion::GTE(left, right)
622                                if left == self && right.as_i64().is_some() =>
623                            {
624                                Some(right.as_i64().unwrap())
625                            }
626                            _ => None,
627                        })
628                        .max()
629                }
630            }
631            Add(terms) => {
632                let mut bound = 0;
633                for t in terms {
634                    if let Some(b) = t.inclusive_bound(scope, upper) {
635                        bound += b;
636                    } else {
637                        return None;
638                    }
639                }
640                Some(bound)
641            }
642            MulInt(p, a) => match p.cmp(&0) {
643                Ordering::Equal => Some(0),
644                Ordering::Greater => a.inclusive_bound(scope, upper).map(|x| x * p),
645                Ordering::Less => a.inclusive_bound(scope, !upper).map(|x| x * p),
646            },
647            Mul(_) => None,
648            Min(terms) if !upper => {
649                terms.iter().filter_map(|t| t.inclusive_bound(scope, false)).min()
650            }
651            Max(terms) if upper => {
652                terms.iter().filter_map(|t| t.inclusive_bound(scope, true)).max()
653            }
654            Div(a, q) => a.inclusive_bound(scope, upper).map(|x| x / (*q as i64)),
655            Broadcast(terms) => {
656                if upper {
657                    Max(terms.clone()).inclusive_bound(scope, true)
658                } else {
659                    Min(terms.clone()).inclusive_bound(scope, false)
660                }
661            }
662            _ => None,
663        }
664    }
665
666    pub fn low_inclusive_bound(&self) -> Option<i64> {
667        if let TDim::Val(v) = self {
668            return Some(*v);
669        }
670        let scope = self.find_scope()?;
671        let data = scope.0.lock();
672        let data = data.borrow();
673        self.inclusive_bound(&data, false)
674    }
675
676    pub fn high_inclusive_bound(&self) -> Option<i64> {
677        if let TDim::Val(v) = self {
678            return Some(*v);
679        }
680        let scope = self.find_scope()?;
681        let data = scope.0.lock();
682        let data = data.borrow();
683        self.inclusive_bound(&data, true)
684    }
685
686    pub fn prove_positive_or_zero(&self) -> bool {
687        if let TDim::Val(v) = self {
688            return *v >= 0;
689        }
690        let Some(scope) = self.find_scope() else { return false };
691        let data = scope.0.lock();
692        let data = data.borrow();
693        data.prove_positive_or_zero(self)
694    }
695
696    pub fn prove_strict_positive(&self) -> bool {
697        if let TDim::Val(v) = self {
698            return *v > 0;
699        }
700        (self.clone() - 1).prove_positive_or_zero()
701    }
702
703    pub fn prove_negative_or_zero(&self) -> bool {
704        if let TDim::Val(v) = self {
705            return *v <= 0;
706        }
707        self.clone().neg().prove_positive_or_zero()
708    }
709
710    pub fn prove_strict_negative(&self) -> bool {
711        if let TDim::Val(v) = self {
712            return *v < 0;
713        }
714        self.clone().neg().prove_strict_positive()
715    }
716
717    pub fn gcd(&self) -> u64 {
718        use self::TDim::*;
719        match self {
720            Val(v) => v.unsigned_abs(),
721            Sym(_) => 1,
722            Add(terms) => {
723                let (head, tail) = terms.split_first().unwrap();
724                tail.iter().fold(head.gcd(), |a, b| a.gcd(&b.gcd()))
725            }
726            MulInt(p, a) => a.gcd() * p.unsigned_abs(),
727            Mul(terms) => terms.iter().map(|t| t.gcd()).product(),
728            Min(terms) => terms.iter().map(|t| t.gcd()).reduce(|a, b| a.gcd(&b)).unwrap(),
729            Max(terms) => terms.iter().map(|t| t.gcd()).reduce(|a, b| a.gcd(&b)).unwrap(),
730            Div(a, q) => {
731                if a.gcd() % *q == 0 {
732                    a.gcd() / *q
733                } else {
734                    1
735                }
736            }
737            Broadcast(terms) => terms.iter().map(|t| t.gcd()).reduce(|a, b| a.gcd(&b)).unwrap_or(1),
738        }
739    }
740
741    fn div(&self, d: u64) -> TDim {
742        use self::TDim::*;
743        if d == 1 {
744            return self.clone();
745        }
746        match self {
747            Val(v) => Val(v / d as i64),
748            Sym(_) => panic!(),
749            Add(terms) => Add(terms.iter().map(|t| t.div(d)).collect()),
750            Min(terms) => Min(terms.iter().map(|t| t.div(d)).collect()),
751            Max(terms) => Max(terms.iter().map(|t| t.div(d)).collect()),
752            Broadcast(terms) => Broadcast(terms.iter().map(|t| t.div(d)).collect()),
753            Mul(_) => Div(Box::new(self.clone()), d),
754            MulInt(p, a) => {
755                if *p == d as i64 {
756                    (**a).clone()
757                } else {
758                    let gcd = p.unsigned_abs().gcd(&d);
759                    MulInt(p / gcd as i64, b!(a.div(d / gcd)))
760                }
761            }
762            Div(a, q) => Div(a.clone(), q * d),
763        }
764    }
765
766    pub fn div_ceil(self, rhs: u64) -> TDim {
767        TDim::Div(Box::new(Add(vec![self, Val(rhs as i64 - 1)])), rhs).reduce()
768    }
769
770    pub(super) fn guess_slope(&self, sym: &Symbol) -> (i64, u64) {
771        fn slope_rec(d: &TDim, sym: &Symbol) -> (i64, i64) {
772            match d {
773                Val(_) => (0, 1),
774                Sym(s) => ((sym == s) as i64, 1),
775                Add(terms) => terms
776                    .iter()
777                    .map(|d| slope_rec(d, sym))
778                    .fold((0, 1), |a, b| ((a.0 * b.1 + a.1 * b.0), (b.1 * a.1))),
779                Mul(terms) => terms
780                    .iter()
781                    .map(|d| slope_rec(d, sym))
782                    .fold((1, 1), |a, b| ((a.0 * b.0), (b.1 * a.1))),
783                MulInt(p, a) => {
784                    let (n, d) = slope_rec(a, sym);
785                    (p * n, d)
786                }
787                Div(a, q) => {
788                    let (n, d) = slope_rec(a, sym);
789                    (n, d * *q as i64)
790                }
791                Broadcast(terms) => slope_rec(&terms[0], sym),
792                Min(terms) => slope_rec(&terms[0], sym),
793                Max(terms) => slope_rec(&terms[0], sym),
794            }
795        }
796        let (p, q) = slope_rec(self, sym);
797        reduce_ratio(p, q)
798    }
799
800    #[allow(clippy::mutable_key_type)]
801    pub fn symbols(&self) -> std::collections::HashSet<Symbol> {
802        match self {
803            Val(_) => maplit::hashset!(),
804            Sym(s) => maplit::hashset!(s.clone()),
805            Add(terms) | Mul(terms) | Broadcast(terms) | Min(terms) | Max(terms) => {
806                terms.iter().fold(maplit::hashset!(), |mut set, v| {
807                    set.extend(v.symbols());
808                    set
809                })
810            }
811            MulInt(_, a) => a.symbols(),
812            Div(a, _) => a.symbols(),
813        }
814    }
815
816    pub fn compatible_with(&self, other: &TDim) -> bool {
817        if let Ok(x) = (self.clone() - other).to_i64() {
818            return x == 0;
819        }
820        true // maybe ? :)
821    }
822}
823
824pub(super) fn reduce_ratio(mut p: i64, mut q: i64) -> (i64, u64) {
825    let gcd = p.abs().gcd(&q.abs());
826    if gcd > 1 {
827        p /= gcd;
828        q /= gcd;
829    }
830    if q < 0 {
831        (-p, (-q) as u64)
832    } else {
833        (p, q as u64)
834    }
835}
836
837impl Zero for TDim {
838    fn zero() -> Self {
839        Val(0)
840    }
841    fn is_zero(&self) -> bool {
842        matches!(self, Val(0))
843    }
844}
845
846impl Default for TDim {
847    fn default() -> TDim {
848        Val(0)
849    }
850}
851
852impl num_traits::Bounded for TDim {
853    fn min_value() -> Self {
854        TDim::Val(i64::MIN)
855    }
856
857    fn max_value() -> Self {
858        TDim::Val(i64::MAX)
859    }
860}
861
862impl num_traits::One for TDim {
863    fn one() -> Self {
864        TDim::Val(1)
865    }
866}
867
868impl ::std::iter::Sum for TDim {
869    fn sum<I: Iterator<Item = TDim>>(iter: I) -> TDim {
870        iter.fold(0.into(), |a, b| a + b)
871    }
872}
873
874impl<'a> ::std::iter::Sum<&'a TDim> for TDim {
875    fn sum<I: Iterator<Item = &'a TDim>>(iter: I) -> TDim {
876        iter.fold(0.into(), |a, b| a + b)
877    }
878}
879
880impl std::iter::Product for TDim {
881    fn product<I: Iterator<Item = TDim>>(iter: I) -> Self {
882        iter.fold(TDim::Val(1), |a, b| a * b)
883    }
884}
885
886impl<'a> ::std::iter::Product<&'a TDim> for TDim {
887    fn product<I: Iterator<Item = &'a TDim>>(iter: I) -> TDim {
888        iter.fold(1.into(), |a, b| a * b)
889    }
890}
891
892macro_rules! from_i {
893    ($i: ty) => {
894        impl From<$i> for TDim {
895            fn from(v: $i) -> TDim {
896                TDim::Val(v as _)
897            }
898        }
899        impl<'a> From<&'a $i> for TDim {
900            fn from(v: &'a $i) -> TDim {
901                TDim::Val(*v as _)
902            }
903        }
904    };
905}
906
907from_i!(i32);
908from_i!(i64);
909from_i!(u64);
910from_i!(isize);
911from_i!(usize);
912
913impl From<Symbol> for TDim {
914    fn from(it: Symbol) -> Self {
915        TDim::Sym(it)
916    }
917}
918
919impl<'a> From<&'a Symbol> for TDim {
920    fn from(it: &'a Symbol) -> Self {
921        TDim::Sym(it.clone())
922    }
923}
924
925impl ops::Neg for TDim {
926    type Output = Self;
927    fn neg(self) -> Self {
928        if let Val(v) = self {
929            Val(-v)
930        } else {
931            TDim::MulInt(-1, Box::new(self)).reduce()
932        }
933    }
934}
935
936impl<'a> ops::AddAssign<&'a TDim> for TDim {
937    fn add_assign(&mut self, rhs: &'a TDim) {
938        if rhs.is_zero() {
939        } else if self.is_zero() {
940            *self = rhs.clone();
941        } else if let (Val(s), Val(o)) = (&mut *self, &rhs) {
942            *s += o;
943        } else {
944            *self = TDim::Add(vec![std::mem::take(self), rhs.clone()]).reduce()
945        }
946    }
947}
948
949impl<I> ops::AddAssign<I> for TDim
950where
951    I: Into<TDim>,
952{
953    fn add_assign(&mut self, rhs: I) {
954        let rhs = rhs.into();
955        if rhs.is_zero() {
956        } else if self.is_zero() {
957            *self = rhs;
958        } else if let (Val(s), Val(o)) = (&mut *self, &rhs) {
959            *s += o;
960        } else {
961            *self = TDim::Add(vec![std::mem::take(self), rhs]).reduce()
962        }
963    }
964}
965
966impl<I> ops::Add<I> for TDim
967where
968    I: Into<TDim>,
969{
970    type Output = Self;
971    fn add(mut self, rhs: I) -> Self {
972        self += rhs;
973        self
974    }
975}
976
977impl<'a> ops::Add<&'a TDim> for TDim {
978    type Output = Self;
979    fn add(mut self, rhs: &'a TDim) -> Self {
980        self += rhs;
981        self
982    }
983}
984
985#[allow(clippy::suspicious_op_assign_impl)]
986impl<'a> ops::SubAssign<&'a TDim> for TDim {
987    fn sub_assign(&mut self, rhs: &'a TDim) {
988        if rhs.is_zero() {
989        } else if self.is_zero() {
990            *self = rhs.clone().neg();
991        } else if let (Val(s), Val(o)) = (&mut *self, &rhs) {
992            *s -= o;
993        } else {
994            *self = TDim::Add(vec![std::mem::take(self), rhs.clone().neg()]).reduce()
995        }
996    }
997}
998
999impl<I> ops::SubAssign<I> for TDim
1000where
1001    I: Into<TDim>,
1002{
1003    fn sub_assign(&mut self, rhs: I) {
1004        let rhs = rhs.into();
1005        if rhs.is_zero() {
1006        } else if self.is_zero() {
1007            *self = rhs.neg();
1008        } else if let (Val(s), Val(o)) = (&mut *self, &rhs) {
1009            *s -= o;
1010        } else {
1011            *self = TDim::Add(vec![std::mem::take(self), rhs.neg()]).reduce()
1012        }
1013    }
1014}
1015
1016impl<I> ops::Sub<I> for TDim
1017where
1018    I: Into<TDim>,
1019{
1020    type Output = Self;
1021    fn sub(mut self, rhs: I) -> Self {
1022        self -= rhs;
1023        self
1024    }
1025}
1026
1027impl<'a> ops::Sub<&'a TDim> for TDim {
1028    type Output = Self;
1029    fn sub(mut self, rhs: &'a TDim) -> Self {
1030        self -= rhs;
1031        self
1032    }
1033}
1034
1035impl<I: Into<TDim>> ops::MulAssign<I> for TDim {
1036    fn mul_assign(&mut self, rhs: I) {
1037        let rhs = rhs.into();
1038        if self.is_one() {
1039            *self = rhs
1040        } else if rhs.is_one() {
1041        } else {
1042            *self = TDim::Mul(vec![rhs, std::mem::take(self)]).reduce()
1043        }
1044    }
1045}
1046
1047impl<'a> ops::MulAssign<&'a TDim> for TDim {
1048    fn mul_assign(&mut self, rhs: &'a TDim) {
1049        if self.is_one() {
1050            *self = rhs.clone()
1051        } else if rhs.is_one() {
1052        } else {
1053            *self = TDim::Mul(vec![std::mem::take(self), rhs.clone()]).reduce()
1054        }
1055    }
1056}
1057
1058impl<I: Into<TDim>> ops::Mul<I> for TDim {
1059    type Output = Self;
1060    fn mul(mut self, rhs: I) -> Self {
1061        self *= rhs.into();
1062        self
1063    }
1064}
1065
1066impl<'a> ops::Mul<&'a TDim> for TDim {
1067    type Output = Self;
1068    fn mul(mut self, rhs: &'a TDim) -> Self {
1069        self *= rhs;
1070        self
1071    }
1072}
1073
1074impl<I: AsPrimitive<u64> + PrimInt> ops::DivAssign<I> for TDim {
1075    fn div_assign(&mut self, rhs: I) {
1076        *self = TDim::Div(Box::new(std::mem::take(self)), rhs.as_()).reduce()
1077    }
1078}
1079
1080impl<I: AsPrimitive<u64> + PrimInt> ops::Div<I> for TDim {
1081    type Output = Self;
1082    fn div(mut self, rhs: I) -> Self {
1083        self /= rhs.as_();
1084        self
1085    }
1086}
1087
1088impl<I: AsPrimitive<u64> + PrimInt> ops::RemAssign<I> for TDim {
1089    fn rem_assign(&mut self, rhs: I) {
1090        *self += -(self.clone() / rhs.as_() * rhs.as_());
1091    }
1092}
1093
1094impl<I: AsPrimitive<u64> + PrimInt> ops::Rem<I> for TDim {
1095    type Output = Self;
1096    fn rem(mut self, rhs: I) -> Self {
1097        self %= rhs;
1098        self
1099    }
1100}
1101
1102#[cfg(test)]
1103mod tests {
1104    use super::*;
1105
1106    macro_rules! b( ($e:expr) => { Box::new($e) } );
1107
1108    lazy_static::lazy_static! {
1109        static ref table: SymbolScope = SymbolScope::default();
1110        static ref A: Symbol = table.sym("a");
1111        static ref B: Symbol = table.sym("b");
1112    }
1113
1114    fn neg(a: &TDim) -> TDim {
1115        mul(-1, a)
1116    }
1117
1118    fn add(a: &TDim, b: &TDim) -> TDim {
1119        TDim::Add(vec![a.clone(), b.clone()])
1120    }
1121
1122    fn mul(a: i64, b: &TDim) -> TDim {
1123        TDim::MulInt(a, b![b.clone()])
1124    }
1125
1126    fn div(a: &TDim, b: u64) -> TDim {
1127        TDim::Div(b!(a.clone()), b)
1128    }
1129
1130    #[test]
1131    fn reduce_add() {
1132        assert_eq!(add(&A.to_dim(), &neg(&A.to_dim())).reduce(), Val(0))
1133    }
1134
1135    #[test]
1136    fn reduce_neg_mul() {
1137        assert_eq!(neg(&mul(2, &A.to_dim())).reduce(), mul(-2, &A.to_dim()))
1138    }
1139
1140    #[test]
1141    fn reduce_cplx_ex_2() {
1142        assert_eq!(
1143            add(
1144                &add(&Val(-4), &mul(-2, &div(&A.to_dim(), 4))),
1145                &mul(-2, &mul(-1, &div(&A.to_dim(), 4)))
1146            )
1147            .reduce(),
1148            Val(-4)
1149        )
1150    }
1151
1152    #[test]
1153    fn reduce_cplx_ex_3() {
1154        assert_eq!(div(&MulInt(1, b!(MulInt(4, b!(A.to_dim())))), 4).reduce(), A.to_dim())
1155    }
1156
1157    #[test]
1158    fn reduce_cplx_ex_4() {
1159        // (S+1)/2 + (1-S)/2 == 1
1160        assert_eq!(
1161            add(&div(&add(&A.to_dim(), &Val(1)), 2), &div(&add(&neg(&A.to_dim()), &Val(1)), 2))
1162                .reduce(),
1163            1.into()
1164        );
1165    }
1166
1167    #[test]
1168    fn reduce_mul_mul_1() {
1169        assert_eq!(mul(3, &mul(2, &A.to_dim())).reduce(), mul(6, &A.to_dim()))
1170    }
1171
1172    #[test]
1173    fn reduce_mul_mul_2() {
1174        assert_eq!(mul(-2, &mul(-1, &A.to_dim())).reduce(), mul(2, &A.to_dim()))
1175    }
1176
1177    #[test]
1178    fn reduce_mul_div_1() {
1179        assert_eq!(mul(2, &div(&mul(-1, &A.to_dim()), 3)).reduce(), mul(-2, &div(&A.to_dim(), 3)))
1180    }
1181
1182    #[test]
1183    fn const_and_add() {
1184        let e: TDim = 2i64.into();
1185        assert_eq!(e.eval(&SymbolValues::default()).to_i64().unwrap(), 2);
1186        let e: TDim = TDim::from(2) + 3;
1187        assert_eq!(e.eval(&SymbolValues::default()).to_i64().unwrap(), 5);
1188        let e: TDim = TDim::from(2) - 3;
1189        assert_eq!(e.eval(&SymbolValues::default()).to_i64().unwrap(), -1);
1190        let e: TDim = -TDim::from(2);
1191        assert_eq!(e.eval(&SymbolValues::default()).to_i64().unwrap(), -2);
1192    }
1193
1194    #[test]
1195    fn substitution() {
1196        let a: TDim = A.to_dim();
1197        assert_eq!(a.eval(&SymbolValues::default().with(&A, 2)).to_i64().unwrap(), 2);
1198        let e = a + 3;
1199        assert_eq!(e.eval(&SymbolValues::default().with(&A, 2)).to_i64().unwrap(), 5);
1200    }
1201
1202    #[test]
1203    fn reduce_adds() {
1204        let e: TDim = TDim::from(2) + 1;
1205        assert_eq!(e, TDim::from(3));
1206        let e: TDim = TDim::from(3) + 2;
1207        assert_eq!(e, TDim::from(5));
1208        let e: TDim = TDim::from(3) + 0;
1209        assert_eq!(e, TDim::from(3));
1210        let e: TDim = TDim::from(3) + 2 + 1;
1211        assert_eq!(e, TDim::from(6));
1212    }
1213
1214    #[test]
1215    fn reduce_muls() {
1216        let e: TDim = Val(1) * A.to_dim();
1217        assert_eq!(e, A.to_dim());
1218        let e: TDim = A.to_dim() * &B.to_dim() * 1;
1219        assert_eq!(e, A.to_dim() * &B.to_dim());
1220    }
1221
1222    #[test]
1223    fn reduce_divs() {
1224        let e: TDim = TDim::from(2) / 1;
1225        assert_eq!(e, TDim::from(2));
1226        let e: TDim = TDim::from(3) / 2;
1227        assert_eq!(e, TDim::from(1));
1228        let e: TDim = TDim::from(3) % 2;
1229        assert_eq!(e, TDim::from(1));
1230        let e: TDim = TDim::from(5) / 2;
1231        assert_eq!(e, TDim::from(2));
1232        let e: TDim = TDim::from(5) % 2;
1233        assert_eq!(e, TDim::from(1));
1234    }
1235
1236    #[test]
1237    fn reduce_div_bug_0() {
1238        let e1: TDim = (A.to_dim() + 23) / 2 - 1;
1239        let e2: TDim = (A.to_dim() + 21) / 2;
1240        assert_eq!(e1, e2);
1241    }
1242
1243    #[test]
1244    fn reduce_div_bug_1() {
1245        let e1: TDim = (A.to_dim() + -1) / 2;
1246        let e2: TDim = (A.to_dim() + 1) / 2 - 1;
1247        assert_eq!(e1, e2);
1248    }
1249
1250    #[test]
1251    fn reduce_div_bug_2() {
1252        let e1: TDim = ((A.to_dim() + 1) / 2 + 1) / 2;
1253        let e2: TDim = (A.to_dim() + 3) / 4;
1254        assert_eq!(e1, e2);
1255    }
1256
1257    #[test]
1258    fn reduce_div_bug_3() {
1259        let e1: TDim = (A.to_dim() / 2) * -4;
1260        let e2: TDim = (A.to_dim() / 2) * -4 / 1;
1261        assert_eq!(e1, e2);
1262    }
1263
1264    #[test]
1265    fn reduce_mul_div() {
1266        let e: TDim = A.to_dim() * 2 / 2;
1267        assert_eq!(e, A.to_dim());
1268    }
1269
1270    #[test]
1271    fn reduce_div_mul() {
1272        let e: TDim = A.to_dim() / 2 * 2;
1273        assert_ne!(e, A.to_dim());
1274    }
1275
1276    #[test]
1277    fn reduce_add_div() {
1278        let e: TDim = A.to_dim() / 2 + 1;
1279        assert_eq!(e, ((A.to_dim() + 2) / 2));
1280    }
1281
1282    #[test]
1283    fn reduce_neg_mul_() {
1284        let e: TDim = TDim::from(1) - A.to_dim() * 2;
1285        assert_eq!(e, TDim::from(1) + A.to_dim() * -2);
1286    }
1287
1288    #[test]
1289    fn reduce_add_rem_1() {
1290        assert_eq!(((A.to_dim() + 4) % 2), (A.to_dim() % 2));
1291    }
1292
1293    #[test]
1294    fn reduce_add_rem_2() {
1295        assert_eq!(((A.to_dim() - 4) % 2), (A.to_dim() % 2));
1296    }
1297
1298    #[test]
1299    fn reduce_rem_div() {
1300        let e: TDim = A.to_dim() % 2 / 2;
1301        assert_eq!(e, TDim::from(0));
1302    }
1303
1304    #[test]
1305    fn conv2d_ex_1() {
1306        let e = (TDim::from(1) - 1 + 1).div_ceil(1);
1307        assert_eq!(e, TDim::from(1));
1308    }
1309
1310    #[test]
1311    fn conv2d_ex_2() {
1312        let e = (A.to_dim() - 3 + 1).div_ceil(1);
1313        assert_eq!(e, A.to_dim() + -2);
1314    }
1315
1316    #[test]
1317    fn extract_int_gcd_from_muls() {
1318        let term = (A.to_dim() + 1) / 4;
1319        let mul = (term.clone() * 24 - 24) * (term.clone() * 2 - 2);
1320        let target = (term.clone() - 1) * (term.clone() - 1) * 48;
1321        assert_eq!(mul, target);
1322    }
1323
1324    #[test]
1325    fn equality_of_muls() {
1326        let term = (A.to_dim() + 1) / 4;
1327        let mul1 = (term.clone() * 2 - 3) * (term.clone() - 1);
1328        let mul2 = (term.clone() - 1) * (term.clone() * 2 - 3);
1329        assert_eq!(mul1, mul2);
1330    }
1331
1332    #[test]
1333    fn factorize_complex_expr_times_int() {
1334        let term = (A.to_dim() + 1) / 4;
1335        let e = term.clone() * 2 - &term - 1;
1336        assert_eq!(e, term - 1);
1337    }
1338
1339    #[test]
1340    fn min_ints_1() {
1341        assert_eq!(2.to_dim().mini(1.to_dim()), 1.to_dim());
1342    }
1343
1344    #[test]
1345    fn min_ints_2() {
1346        assert_eq!(1.to_dim().mini(2.to_dim()), 1.to_dim());
1347    }
1348
1349    #[test]
1350    fn min_same() {
1351        assert_eq!(A.to_dim().mini(A.to_dim()), A.to_dim());
1352    }
1353
1354    #[test]
1355    fn min_noop() {
1356        assert_eq!(A.to_dim().mini(1.to_dim()), A.to_dim().mini(1.to_dim()));
1357    }
1358
1359    #[test]
1360    fn min_diff_1() {
1361        assert_eq!((A.to_dim() + 1).mini(A.to_dim() + 2), A.to_dim() + 1);
1362    }
1363
1364    #[test]
1365    fn slope_0() {
1366        assert_eq!(12.to_dim().guess_slope(&A), (0, 1));
1367    }
1368
1369    #[test]
1370    fn slope_1() {
1371        assert_eq!(A.to_dim().guess_slope(&A), (1, 1));
1372    }
1373
1374    #[test]
1375    fn slope_2() {
1376        assert_eq!((A.to_dim() * 2).guess_slope(&A), (2, 1));
1377    }
1378
1379    #[test]
1380    fn slope_3() {
1381        assert_eq!((A.to_dim() * 2 + A.to_dim() / 2).guess_slope(&A), (5, 2));
1382    }
1383
1384    #[test]
1385    fn slope_4() {
1386        assert_eq!((A.to_dim()).guess_slope(&B), (0, 1));
1387    }
1388
1389    #[test]
1390    fn slope_5() {
1391        assert_eq!((A.to_dim() + 1).guess_slope(&A), (1, 1));
1392        assert_eq!((A.to_dim() + 1).guess_slope(&B), (0, 1));
1393    }
1394
1395    #[test]
1396    fn slope_6() {
1397        assert_eq!((A.to_dim() + 1).guess_slope(&A), (1, 1));
1398        assert_eq!((A.to_dim() + B.to_dim()).guess_slope(&B), (1, 1));
1399    }
1400
1401    #[test]
1402    fn min_0() -> TractResult<()> {
1403        let symbols = SymbolScope::default();
1404        assert_eq!(
1405            symbols.parse_tdim("min(S+3, S+2)").unwrap().simplify(),
1406            symbols.parse_tdim("S+2").unwrap(),
1407        );
1408        Ok(())
1409    }
1410}