use itertools::Itertools;
use num_traits::{AsPrimitive, Zero};
use std::collections::HashMap;
use std::{fmt, ops};
macro_rules! b( ($e:expr) => { Box::new($e) } );
lazy_static::lazy_static! {
static ref SYMBOL_TABLE: std::sync::Mutex<Vec<char>> = std::sync::Mutex::new(Vec::new());
}
#[derive(Copy, Clone, PartialEq, Eq, Ord, PartialOrd, Hash, Debug)]
pub struct Symbol(char, usize);
impl Symbol {
pub fn new(c: char) -> Symbol {
let mut table = SYMBOL_TABLE.lock().unwrap();
table.push(c);
Symbol(c, table.len() - 1)
}
}
impl From<char> for Symbol {
fn from(c: char) -> Symbol {
let mut table = SYMBOL_TABLE.lock().unwrap();
if let Some(pos) = table.iter().position(|s| *s == c) {
Symbol(c, pos)
} else {
table.push(c);
Symbol(c, table.len() - 1)
}
}
}
#[derive(Clone, Debug, Default)]
pub struct SymbolValues(Vec<Option<i64>>);
impl SymbolValues {
pub fn with(mut self, s: Symbol, v: i64) -> Self {
self[s] = Some(v);
self
}
}
impl std::ops::Index<Symbol> for SymbolValues {
type Output = Option<i64>;
fn index(&self, index: Symbol) -> &Self::Output {
if index.1 < self.0.len() {
&self.0[index.1]
} else {
&None
}
}
}
impl std::ops::IndexMut<Symbol> for SymbolValues {
fn index_mut(&mut self, index: Symbol) -> &mut Self::Output {
if index.1 >= self.0.len() {
self.0.resize_with(index.1 + 1, Default::default)
}
&mut self.0[index.1]
}
}
#[derive(Clone, PartialEq, Eq, Ord, PartialOrd, Hash, Debug)]
pub enum TDim {
Sym(Symbol),
Val(i64),
Add(Vec<TDim>),
Mul(i64, Box<TDim>),
Div(Box<TDim>, u64),
}
use TDim::*;
impl fmt::Display for TDim {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match &self {
Sym(sym) => write!(fmt, "{}", sym.0),
Val(it) => write!(fmt, "{}", it),
Add(it) => write!(fmt, "{}", it.iter().map(|x| format!("{}", x)).join("+")),
Mul(a, b) => write!(fmt, "{}.{}", a, b),
Div(a, b) => write!(fmt, "({})/{}", a, b),
}
}
}
impl TDim {
pub fn is_one(&self) -> bool {
self == &Val(1)
}
pub fn to_i64(&self) -> anyhow::Result<i64> {
if let Val(v) = self {
Ok(*v)
} else {
anyhow::bail!("Not a determined integer: {}", self)
}
}
pub fn eval(&self, values: &SymbolValues) -> TDim {
match self {
Sym(sym) => values[*sym].map(|s| Val(s)).unwrap_or(Sym(*sym)),
Val(v) => Val(*v),
Add(terms) => terms.iter().fold(Val(0), |acc, it| -> TDim { acc + it.eval(values) }),
Div(a, q) => a.eval(values) / *q as i64,
Mul(p, a) => a.eval(values) * *p,
}
}
pub fn reduce(self) -> TDim {
self.simplify()
.wiggle()
.into_iter()
.sorted()
.unique()
.map(|e| e.simplify())
.min_by_key(|e| e.cost())
.unwrap()
}
fn cost(&self) -> usize {
use self::TDim::*;
match self {
Sym(_) | Val(_) => 1,
Add(terms) => 2 * terms.iter().map(TDim::cost).sum::<usize>(),
Div(a, _) => 3 * a.cost(),
Mul(_, a) => 2 * a.cost(),
}
}
fn wiggle(&self) -> Vec<TDim> {
use self::TDim::*;
match self {
Sym(_) | Val(_) => vec![self.clone()],
Add(terms) => {
let mut forms = vec![];
let sub_wiggle = terms.iter().map(|e| e.wiggle()).multi_cartesian_product();
for sub in sub_wiggle {
for (ix, num, q) in sub
.iter()
.enumerate()
.filter_map(
|(ix, t)| if let Div(a, q) = t { Some((ix, a, q)) } else { None },
)
.next()
{
let new_num = sub
.iter()
.enumerate()
.map(|(ix2, t)| {
if ix2 != ix {
Mul(*q as i64, b!(t.clone()))
} else {
(**num).clone()
}
})
.collect();
forms.push(Div(b!(Add(new_num)), *q))
}
forms.push(Add(sub.into()));
}
forms
}
Mul(p, a) => a.wiggle().into_iter().map(|a| Mul(*p, b!(a))).collect(),
Div(a, q) => {
let mut forms = vec![];
for num in a.wiggle() {
if let Add(terms) = &num {
let (integer, non_integer): (Vec<_>, Vec<_>) =
terms.into_iter().cloned().partition(|a| a.gcd() % q == 0);
let mut new_terms = integer.iter().map(|i| i.div(*q)).collect::<Vec<_>>();
if non_integer.len() > 0 {
new_terms.push(Div(b!(Add(non_integer)), *q));
}
forms.push(Add(new_terms))
}
forms.push(Div(b!(num), *q))
}
forms
}
}
}
pub fn simplify(self) -> TDim {
use self::TDim::*;
use num_integer::Integer;
match self {
Add(mut terms) => {
let mut reduced: HashMap<TDim, i64> = HashMap::new();
while let Some(item) = terms.pop() {
let term = item.simplify();
match term {
Add(items) => {
terms.extend(items.into_iter());
continue;
}
Val(0) => (),
Val(v) => *reduced.entry(Val(1)).or_insert(0) += v,
Mul(v, f) => {
*reduced.entry((*f).clone()).or_insert(0) += v;
}
n => *reduced.entry(n).or_insert(0) += 1,
};
}
let mut members: Vec<_> = reduced
.into_iter()
.filter_map(|(k, v)| {
if v == 0 {
None
} else if k == Val(1) {
Some(Val(v))
} else if v == 1 {
Some(k)
} else {
Some(Mul(v, b![k]))
}
})
.collect();
members.sort();
if members.len() == 0 {
Val(0)
} else if members.len() > 1 {
Add(members)
} else {
members.remove(0)
}
}
Mul(p, a) => {
if let Mul(p2, a) = *a {
return Mul(p * p2, a).simplify();
} else if let Val(p2) = *a {
return Val(p * p2);
}
let a = a.simplify();
if p == 0 {
Val(0)
} else if p == 1 {
a
} else if let Add(terms) = &a {
Add(terms.clone().into_iter().map(|a| Mul(p, b!(a)).simplify()).collect())
} else if let Val(p2) = a {
Val(p * p2)
} else if let Mul(p2, a) = a {
Mul(p * p2, a)
} else {
Mul(p, b!(a))
}
}
Div(a, q) => {
if q == 1 {
return a.simplify();
} else if let Div(a, q2) = *a {
return Div(a, q * q2).simplify();
}
let a = a.simplify();
if let Val(a) = a {
Val(a / q as i64)
} else if let Mul(-1, a) = a {
Mul(-1, b!(Div(a, q)))
} else if let Add(mut terms) = a {
if terms.iter().any(|t| {
if let Mul(-1, s) = t {
if let Sym(_) = &**s {
true
} else {
false
}
} else {
false
}
}) {
Mul(
-1,
b!(Div(
b!(Add(terms.into_iter().map(|t| Mul(-1, b!(t))).collect())
.simplify()),
q
)),
)
} else if let Some(v) = terms
.iter()
.filter_map(|t| if let Val(v) = t { Some(*v) } else { None })
.next()
{
let offset = if v >= q as i64 {
Some(v / q as i64)
} else if v < 0 {
Some(-(-v).div_ceil(&(q as i64)))
} else {
None
};
if let Some(val) = offset {
terms.push(Val(-val * q as i64));
Add(vec![Val(val), Div(b!(Add(terms).simplify()), q)])
} else {
Div(b!(Add(terms)), q)
}
} else {
Div(b!(Add(terms)), q)
}
} else if let Mul(p, a) = a {
if p == q as i64 {
a.simplify()
} else {
let gcd = p.abs().gcd(&(q as i64));
if gcd == p {
Div(a, q / gcd as u64)
} else if gcd == q as i64 {
Mul(p / gcd, a)
} else if gcd > 1 {
Div(b!(Mul(p / gcd, a)), q / gcd as u64).simplify()
} else {
Div(b!(Mul(p, a)), q)
}
}
} else {
Div(b!(a), q)
}
}
_ => self,
}
}
fn gcd(&self) -> u64 {
use self::TDim::*;
use num_integer::Integer;
match self {
Val(v) => v.abs() as u64,
Sym(_) => 1,
Add(terms) => {
let (head, tail) = terms.split_first().unwrap();
tail.iter().fold(head.gcd(), |a, b| a.gcd(&b.gcd()))
}
Mul(p, a) => a.gcd() * p.abs() as u64,
Div(a, q) => {
if a.gcd() % *q == 0 {
a.gcd() / *q
} else {
1
}
}
}
}
fn div(&self, d: u64) -> TDim {
use self::TDim::*;
use num_integer::Integer;
if d == 1 {
return self.clone();
}
match self {
Val(v) => Val(v / d as i64),
Sym(_) => panic!(),
Add(terms) => Add(terms.iter().map(|t| t.div(d)).collect()),
Mul(p, a) => {
if *p == d as i64 {
(**a).clone()
} else {
let gcd = (p.abs() as u64).gcd(&d);
Mul(p / gcd as i64, b!(a.div(d / gcd)))
}
}
Div(a, q) => Div(a.clone(), q * d),
}
}
pub fn div_ceil(self, rhs: u64) -> TDim {
TDim::Div(Box::new(Add(vec![self, Val(rhs as i64 - 1)])), rhs).reduce()
}
pub fn slope(&self, sym: Symbol) -> (i64, u64) {
fn slope_rec(d: &TDim, sym: Symbol) -> (i64, i64) {
match d {
Val(_) => (0, 1),
Sym(s) => ((sym == *s) as i64, 1),
Add(terms) => terms
.iter()
.map(|d| slope_rec(d, sym))
.fold((1, 1), |a, b| ((a.0 * b.1 + a.1 * b.0), (b.1 * a.1))),
Mul(p, a) => {
let (n, d) = slope_rec(a, sym);
(p * n, d)
}
Div(a, q) => {
let (n, d) = slope_rec(a, sym);
(n, d * *q as i64)
}
}
}
let (p, q) = slope_rec(self, sym);
reduce_ratio(p, q)
}
pub fn symbols(&self) -> std::collections::HashSet<Symbol> {
match self {
Val(_) => maplit::hashset!(),
Sym(s) => maplit::hashset!(*s),
Add(terms) => terms.iter().fold(maplit::hashset!(), |mut set, v| {
set.extend(v.symbols().into_iter());
set
}),
Mul(_, a) => a.symbols(),
Div(a, _) => a.symbols(),
}
}
}
pub(super) fn reduce_ratio(mut p: i64, mut q: i64) -> (i64, u64) {
use num_integer::Integer;
let gcd = p.abs().gcd(&q.abs());
if gcd > 1 {
p /= gcd;
q /= gcd;
}
if q < 0 {
(-p, (-q) as u64)
} else {
(p, q as u64)
}
}
impl Zero for TDim {
fn zero() -> Self {
Self::from(0)
}
fn is_zero(&self) -> bool {
*self == Self::zero()
}
}
impl Default for TDim {
fn default() -> TDim {
TDim::zero()
}
}
impl ::std::iter::Sum for TDim {
fn sum<I: Iterator<Item = TDim>>(iter: I) -> TDim {
iter.fold(0.into(), |a, b| a + b)
}
}
impl<'a> ::std::iter::Sum<&'a TDim> for TDim {
fn sum<I: Iterator<Item = &'a TDim>>(iter: I) -> TDim {
iter.fold(0.into(), |a, b| a + b)
}
}
macro_rules! from_i {
($i: ty) => {
impl From<$i> for TDim {
fn from(v: $i) -> TDim {
TDim::Val(v as _)
}
}
impl<'a> From<&'a $i> for TDim {
fn from(v: &'a $i) -> TDim {
TDim::Val(*v as _)
}
}
};
}
from_i!(i32);
from_i!(i64);
from_i!(isize);
from_i!(usize);
impl From<Symbol> for TDim {
fn from(it: Symbol) -> Self {
TDim::Sym(it)
}
}
impl<'a> From<&'a Symbol> for TDim {
fn from(it: &'a Symbol) -> Self {
TDim::Sym(*it)
}
}
impl ops::Neg for TDim {
type Output = Self;
fn neg(self) -> Self {
TDim::Mul(-1, Box::new(self)).reduce()
}
}
impl<'a> ops::AddAssign<&'a TDim> for TDim {
fn add_assign(&mut self, rhs: &'a TDim) {
*self = TDim::Add(vec![std::mem::take(self), rhs.clone()]).reduce()
}
}
impl<I> ops::AddAssign<I> for TDim
where
I: Into<TDim>,
{
fn add_assign(&mut self, rhs: I) {
let rhs = rhs.into();
*self += &rhs
}
}
impl<I> ops::Add<I> for TDim
where
I: Into<TDim>,
{
type Output = Self;
fn add(mut self, rhs: I) -> Self {
self += rhs;
self
}
}
impl<'a> ops::Add<&'a TDim> for TDim {
type Output = Self;
fn add(mut self, rhs: &'a TDim) -> Self {
self += rhs;
self
}
}
impl<'a> ops::SubAssign<&'a TDim> for TDim {
fn sub_assign(&mut self, rhs: &'a TDim) {
use std::ops::Neg;
*self += rhs.clone().neg()
}
}
impl<I> ops::SubAssign<I> for TDim
where
I: Into<TDim>,
{
fn sub_assign(&mut self, rhs: I) {
use std::ops::Neg;
*self += rhs.into().neg()
}
}
impl<I> ops::Sub<I> for TDim
where
I: Into<TDim>,
{
type Output = Self;
fn sub(mut self, rhs: I) -> Self {
self -= rhs;
self
}
}
impl<'a> ops::Sub<&'a TDim> for TDim {
type Output = Self;
fn sub(mut self, rhs: &'a TDim) -> Self {
self -= rhs;
self
}
}
impl ops::MulAssign<i64> for TDim {
fn mul_assign(&mut self, rhs: i64) {
*self = TDim::Mul(rhs, Box::new(std::mem::take(self))).reduce()
}
}
impl<I: AsPrimitive<i64>> ops::Mul<I> for TDim {
type Output = Self;
fn mul(mut self, rhs: I) -> Self {
self *= rhs.as_();
self
}
}
impl<I: AsPrimitive<u64>> ops::DivAssign<I> for TDim {
fn div_assign(&mut self, rhs: I) {
*self = TDim::Div(Box::new(std::mem::take(self)), rhs.as_()).reduce()
}
}
impl<I: AsPrimitive<u64>> ops::Div<I> for TDim {
type Output = Self;
fn div(mut self, rhs: I) -> Self {
self /= rhs.as_();
self
}
}
impl<I: AsPrimitive<u64>> ops::RemAssign<I> for TDim {
fn rem_assign(&mut self, rhs: I) {
*self += -(self.clone() / rhs.as_() * rhs.as_());
}
}
impl<I: AsPrimitive<u64>> ops::Rem<I> for TDim {
type Output = Self;
fn rem(mut self, rhs: I) -> Self {
self %= rhs;
self
}
}
impl std::str::FromStr for TDim {
type Err = std::num::ParseIntError;
fn from_str(s: &str) -> Result<TDim, Self::Err> {
s.parse::<i64>().map(|i| i.into())
}
}
#[cfg(test)]
mod tests {
use super::*;
macro_rules! b( ($e:expr) => { Box::new($e) } );
lazy_static::lazy_static! {
static ref S: Symbol = crate::dim::Symbol::new('S');
}
fn s() -> TDim {
(*S).into()
}
fn neg(a: &TDim) -> TDim {
mul(-1, a)
}
fn add(a: &TDim, b: &TDim) -> TDim {
TDim::Add(vec![a.clone(), b.clone()])
}
fn mul(a: i64, b: &TDim) -> TDim {
TDim::Mul(a, b![b.clone()])
}
fn div(a: &TDim, b: u64) -> TDim {
TDim::Div(b!(a.clone()), b)
}
#[test]
fn reduce_add() {
assert_eq!(add(&s(), &neg(&s())).reduce(), Val(0))
}
#[test]
fn reduce_neg_mul() {
assert_eq!(neg(&mul(2, &s())).reduce(), mul(-2, &s()))
}
#[test]
fn reduce_cplx_ex_2() {
assert_eq!(
add(&add(&Val(-4), &mul(-2, &div(&s(), 4))), &mul(-2, &mul(-1, &div(&s(), 4))))
.reduce(),
Val(-4)
)
}
#[test]
fn reduce_cplx_ex_3() {
assert_eq!(div(&Mul(1, b!(Mul(4, b!(s())))), 4).reduce(), s())
}
#[test]
fn reduce_cplx_ex_4() {
assert_eq!(
add(&div(&add(&s(), &Val(1)), 2), &div(&add(&neg(&s()), &Val(1)), 2)).reduce(),
1.into()
);
}
#[test]
fn reduce_mul_mul_1() {
assert_eq!(mul(3, &mul(2, &s())).reduce(), mul(6, &s()))
}
#[test]
fn reduce_mul_mul_2() {
assert_eq!(mul(-2, &mul(-1, &s())).reduce(), mul(2, &s()))
}
#[test]
fn reduce_mul_div_1() {
assert_eq!(mul(2, &div(&mul(-1, &s()), 3)).reduce(), mul(-2, &div(&s(), 3)))
}
#[test]
fn const_and_add() {
let e: TDim = 2i64.into();
assert_eq!(e.eval(&SymbolValues::default()).to_i64().unwrap(), 2);
let e: TDim = TDim::from(2) + 3;
assert_eq!(e.eval(&SymbolValues::default()).to_i64().unwrap(), 5);
let e: TDim = TDim::from(2) - 3;
assert_eq!(e.eval(&SymbolValues::default()).to_i64().unwrap(), -1);
let e: TDim = -TDim::from(2);
assert_eq!(e.eval(&SymbolValues::default()).to_i64().unwrap(), -2);
}
#[test]
fn substitution() {
let x = Symbol::new('x');
let e: TDim = x.into();
assert_eq!(e.eval(&SymbolValues::default().with(x, 2)).to_i64().unwrap(), 2);
let e = e + 3;
assert_eq!(e.eval(&SymbolValues::default().with(x, 2)).to_i64().unwrap(), 5);
}
#[test]
fn reduce_adds() {
let e: TDim = TDim::from(2) + 1;
assert_eq!(e, TDim::from(3));
let e: TDim = TDim::from(3) + 2;
assert_eq!(e, TDim::from(5));
let e: TDim = TDim::from(3) + 0;
assert_eq!(e, TDim::from(3));
let e: TDim = TDim::from(3) + 2 + 1;
assert_eq!(e, TDim::from(6));
}
#[test]
fn reduce_divs() {
let e: TDim = TDim::from(2) / 1;
assert_eq!(e, TDim::from(2));
let e: TDim = TDim::from(3) / 2;
assert_eq!(e, TDim::from(1));
let e: TDim = TDim::from(3) % 2;
assert_eq!(e, TDim::from(1));
let e: TDim = TDim::from(5) / 2;
assert_eq!(e, TDim::from(2));
let e: TDim = TDim::from(5) % 2;
assert_eq!(e, TDim::from(1));
}
#[test]
fn reduce_div_bug_0() {
let e1: TDim = (s() + 23) / 2 - 1;
let e2: TDim = (s() + 21) / 2;
assert_eq!(e1, e2);
}
#[test]
fn reduce_div_bug_1() {
let e1: TDim = (s() + -1) / 2;
let e2: TDim = (s() + 1) / 2 - 1;
assert_eq!(e1, e2);
}
#[test]
fn reduce_div_bug_2() {
let e1: TDim = ((s() + 1) / 2 + 1) / 2;
let e2: TDim = (s() + 3) / 4;
assert_eq!(e1, e2);
}
#[test]
fn reduce_div_bug_3() {
let e1: TDim = (s() / 2) * -4;
let e2: TDim = (s() / 2) * -4 / 1;
assert_eq!(e1, e2);
}
#[test]
fn reduce_mul_div() {
let e: TDim = s() * 2 / 2;
assert_eq!(e, s());
}
#[test]
fn reduce_div_mul() {
let e: TDim = s() / 2 * 2;
assert_ne!(e, s());
}
#[test]
fn reduce_add_div() {
let e: TDim = s() / 2 + 1;
assert_eq!(e, ((s() + 2) / 2));
}
#[test]
fn reduce_neg_mul_() {
let e: TDim = TDim::from(1) - s() * 2;
assert_eq!(e, TDim::from(1) + s() * -2);
}
#[test]
fn reduce_add_rem_1() {
assert_eq!(((s() + 4) % 2), (s() % 2));
}
#[test]
fn reduce_add_rem_2() {
assert_eq!(((s() - 4) % 2), (s() % 2));
}
#[test]
fn reduce_rem_div() {
let e: TDim = s() % 2 / 2;
assert_eq!(e, TDim::from(0));
}
#[test]
fn conv2d_ex_1() {
let e = (TDim::from(1) - 1 + 1).div_ceil(1);
assert_eq!(e, TDim::from(1));
}
#[test]
fn conv2d_ex_2() {
let e = (s() - 3 + 1).div_ceil(1);
assert_eq!(e, s() + -2);
}
}