1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
use crate::internal::*; use crate::ops; use ndarray::prelude::*; mod array; mod conv; mod scan; #[derive(Debug, Clone, new, Default, PartialEq, Hash)] pub struct Downsample { pub axis: usize, pub stride: usize, pub modulo: usize, } impl Downsample { fn eval_t<T: Datum>(&self, input: &Tensor) -> TractResult<Arc<Tensor>> { let input = input.to_array_view::<T>()?; let sampled = if self.modulo < input.shape()[self.axis] { input .slice_axis( Axis(self.axis), ndarray::Slice::new(self.modulo as isize, None, self.stride as isize), ) .to_owned() .into_arc_tensor() } else { let mut shape = input.shape().to_vec(); shape[self.axis] = 0; unsafe { Tensor::uninitialized::<T>(&shape)?.into_arc_tensor() } }; Ok(sampled) } pub(crate) fn transform_dim(&self, input_dim: &TDim) -> TDim { (input_dim.clone() - self.modulo).div_ceil(self.stride as u32) } pub(crate) fn transform_fact(&self, input_fact: &TypedFact) -> TractResult<TypedFact> { let mut downed = input_fact.clone(); let down_len = self.transform_dim(&input_fact.shape.dim(self.axis)); downed.shape.set_dim(self.axis, down_len.clone())?; Ok(downed) } } tract_linalg::impl_dyn_hash!(Downsample); impl Op for Downsample { fn name(&self) -> Cow<str> { "Downsample".into() } fn info(&self) -> TractResult<Vec<String>> { Ok(vec![format!("axis:{} stride:{} modulo:{}", self.axis, self.stride, self.modulo)]) } op_core_mir!(); impl_op_same_as!(); op_as_typed_op!(); op_as_pulsed_op!(); } impl StatelessOp for Downsample { fn eval(&self, mut inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> { let input = args_1!(inputs); Ok(tvec!(dispatch_datum!(Self::eval_t(input.datum_type())(self, &*input))?)) } } impl TypedOp for Downsample { fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> { let mut downed = inputs[0].clone(); let down_len = self.transform_dim(&downed.shape.dim(self.axis)); downed.shape.set_dim(self.axis, down_len.clone())?; Ok(tvec!(downed)) } fn declutter( &self, model: &TypedModel, node: &TypedNode, ) -> TractResult<Option<TypedModelPatch>> { if self.stride == 1 { return Ok(Some(TypedModelPatch::shunt_one_op(model, node)?)); } pull_downsample_up(model, node) } fn pulsify( &self, _source: &NormalizedModel, node: &NormalizedNode, target: &mut PulsedModel, mapping: &HashMap<OutletId, OutletId>, _pulse: usize, ) -> TractResult<TVec<OutletId>> { let input = mapping[&node.inputs[0]]; let pulse = target.outlet_fact(input)?.pulse(); if pulse % self.stride != 0 { bail!("Pulsificaton requires pulse to be a stride multiple") } target.wire_node(&*node.name, self.clone(), &[input]) } as_op!(); } impl PulsedOp for Downsample { fn pulsed_output_facts(&self, inputs: &[&PulsedFact]) -> TractResult<TVec<PulsedFact>> { let mut fact = inputs[0].clone(); fact.shape[self.axis] /= self.stride; fact.dim = fact.dim.div_ceil(self.stride as u32); Ok(tvec!(fact)) } as_op!(); pulsed_op_to_typed_op!(); } fn pull_downsample_up( model: &TypedModel, down_node: &TypedNode, ) -> TractResult<Option<TypedModelPatch>> { let down_op = down_node.op_as::<Downsample>().unwrap(); if let Some(prec) = model.single_prec(down_node.id)? { let invariants = prec.op.invariants(model, prec)?; debug!("Consider pull {:?} over {:?} (invariants: {:?})", down_op, prec, invariants); if let Some(crop_op) = prec.op_as::<ops::array::Slice<TDim>>() { return array::pull_downsample_over_slice(model, prec, crop_op, down_node, down_op); } else if let Some(crop_op) = prec.op_as::<ops::array::Slice<usize>>() { return array::pull_downsample_over_slice(model, prec, crop_op, down_node, down_op); } else if let Some(other_op) = prec.op_as::<AxisOp>() { return array::pull_downsample_over_axis_op(model, prec, other_op, down_node, down_op); } else if let Some(conv_op) = prec.op_as::<ops::cnn::conv::ConvUnary>() { return conv::fuse_downsample_into_conv(model, prec, conv_op, down_node, down_op); } else if let Some(other_op) = prec.op_as::<ops::scan::Scan>() { return scan::pull_downsample_over_scan(model, prec, other_op, down_node, down_op); } else if let Some(above_axis) = invariants.unary_track_axis_up(down_op.axis, false) { let mut patch = TypedModelPatch::default(); let mut inputs = vec![]; for (ix, &oo) in prec.inputs.iter().enumerate() { let source = patch.tap_model(model, oo)?; let mut op = down_op.clone(); op.axis = above_axis; let ds = patch.wire_node(format!("{}-{}", prec.name, ix), op, [source].as_ref())?; inputs.push(ds[0]); } let other = patch.wire_node(&*prec.name, prec.op.clone(), &*inputs)?; patch.shunt_outside(model, OutletId::new(down_node.id, 0), other[0])?; return Ok(Some(patch)); } } Ok(None) }