1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
use crate::internal::*; use crate::ops::cnn::{PaddingSpec, Patch, PatchSpec}; use crate::ops::nn::{DataFormat, DataShape}; #[derive(Debug, Clone, new, Default, Hash)] pub struct PoolSpec { pub data_format: DataFormat, pub kernel_shape: TVec<usize>, pub padding: PaddingSpec, pub dilations: Option<TVec<usize>>, pub strides: Option<TVec<usize>>, pub output_channel_override: Option<usize>, } impl PoolSpec { pub fn info(&self) -> Vec<String> { vec![ format!("Data format: {:?}", self.data_format), format!( "Kernel shape:{:?} (strides:{:?}, padding:{:?}, dilations:{:?})", self.kernel_shape, self.strides, self.padding, self.dilations, ), ] } pub fn dilation(&self, geo_axis: usize) -> usize { self.dilations.as_ref().map(|d| d[geo_axis]).unwrap_or(1) } pub fn stride(&self, geo_axis: usize) -> usize { self.strides.as_ref().map(|s| s[geo_axis]).unwrap_or(1) } pub fn compute_geo(&self, input_full_shape: &[usize]) -> TractResult<(DataShape, Patch, DataShape)> { let input_shape = self.data_format.shape(input_full_shape.into())?; let output_inner_stride = match self.data_format { DataFormat::NCHW | DataFormat::CHW => 1, DataFormat::NHWC | DataFormat::HWC => { self.output_channel_override.clone().unwrap_or(*input_shape.c()) } }; let mut spec = PatchSpec::for_full_shape(self.data_format, input_full_shape)? .with_output_inner_stride(output_inner_stride) .with_kernel_shape(self.kernel_shape.clone()) .with_padding(self.padding.clone()); if let Some(strides) = self.strides.clone() { spec = spec.with_strides(strides); } if let Some(dilations) = self.dilations.clone() { spec = spec.with_dilations(dilations); } let patch = spec.into_patch(); let output_shape = input_shape.fmt.from_n_c_hw( *input_shape.n().unwrap_or(&1), self.output_channel_override.unwrap_or(*input_shape.c()), &*patch.output_shape, )?; Ok((input_shape, patch, output_shape)) } pub fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> { let ishape = self.data_format.shape(inputs[0].shape.to_tvec())?; let ones = tvec![1; ishape.hw_rank()]; let computed = self.padding.compute( ishape.hw_dims(), &*self.kernel_shape, self.dilations.as_ref().unwrap_or(&ones), self.strides.as_ref().unwrap_or(&ones), ); let spatial_dims = computed.into_iter().map(|d| d.output).collect::<TVec<TDim>>(); let oshape = self.data_format.from_n_c_hw( ishape.n().cloned().unwrap_or(1.to_dim()), self.output_channel_override.map(|i| i.to_dim()).unwrap_or(ishape.c().clone()), spatial_dims, )?; Ok(tvec!(TypedFact::dt_shape(inputs[0].datum_type, &*oshape.shape)?)) } pub fn pulsify( &self, _source: &NormalizedModel, node: &NormalizedNode, op: &dyn PulsedOp, target: &mut PulsedModel, mapping: &HashMap<OutletId, OutletId>, ) -> TractResult<TVec<OutletId>> { let input = mapping[&node.inputs[0]]; let fact = target.outlet_fact(input)?.clone(); let input_shape = self.data_format.shape(&*fact.shape)?; if Some(fact.axis) == input_shape.n_axis() { target.wire_node(&*node.name, dyn_clone::clone_box(op), &[input]) } else if fact.axis == input_shape.c_axis() { bail!("Can not pulsify cnn pooling ops along the input channel axis"); } else { let geo_axis = fact.axis - input_shape.h_axis(); let stride = self.strides.as_ref().and_then(|v| v.get(geo_axis).cloned()).unwrap_or(1); let pulse = fact.pulse(); if fact.pulse() % stride != 0 { bail!("Pulsificaton requires pulse to be a stride multiple") } let dilation = self.dilations.as_ref().map(|d| d[geo_axis]).unwrap_or(1); let kernel_len = (self.kernel_shape[geo_axis] - 1) * dilation; let overlap = (kernel_len + 1).saturating_sub(stride); let misalignment = fact.delay % pulse; let mut wire = input; if overlap > 0 || misalignment > 0 { let align_to = (overlap + fact.delay).div_ceil(stride) * stride; let delay = align_to - overlap - fact.delay; wire = target.wire_node( format!("{}.Delay", node.name), crate::pulse::delay::Delay::new(&fact, delay, overlap), &[wire], )?[0]; } target.wire_node(&*node.name, dyn_clone::clone_box(op), &[wire]) } } pub fn dispose_n_axis(&self) -> PoolSpec { PoolSpec { data_format: self.data_format.dispose_n_axis(), ..self.clone() } } pub fn pulsed_output_facts(&self, inputs: &[&PulsedFact]) -> TractResult<TVec<PulsedFact>> { let ishape = self.data_format.shape(&inputs[0].shape)?; let ones = tvec![1; ishape.hw_rank()]; let computed = self.padding.compute( ishape.hw_dims(), &*self.kernel_shape, self.dilations.as_ref().unwrap_or(&ones), self.strides.as_ref().unwrap_or(&ones), ); let spatial_dims = computed.into_iter().map(|d| d.output).collect::<TVec<usize>>(); let oshape = self.data_format.from_n_c_hw( ishape.n().cloned().unwrap_or(1), self.output_channel_override.unwrap_or(*ishape.c()), spatial_dims, )?; let mut fact = inputs[0].clone(); let input_shape = self.data_format.shape(&*fact.shape)?; let geo_axis = fact.axis - input_shape.h_axis(); let dilation = self.dilations.as_ref().map(|d| d[geo_axis]).unwrap_or(1); let kernel_len = (self.kernel_shape[geo_axis] - 1) * dilation; let stride = self.strides.as_ref().and_then(|v| v.get(geo_axis).cloned()).unwrap_or(1); fact.delay /= stride; fact.dim = (fact.dim.clone() - kernel_len.to_dim()).div_ceil(stride as u32); fact.shape = oshape.shape; Ok(tvec!(fact)) } }