1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
use crate::internal::*;

use crate::ops::cnn::{PaddingSpec, Patch, PatchSpec};
use crate::ops::nn::{DataFormat, DataShape};

#[derive(Debug, Clone, new, Default, Hash)]
pub struct PoolSpec {
    pub data_format: DataFormat,
    pub kernel_shape: TVec<usize>,
    pub padding: PaddingSpec,
    pub dilations: Option<TVec<usize>>,
    pub strides: Option<TVec<usize>>,
    pub output_channel_override: Option<usize>,
}

impl PoolSpec {
    pub fn info(&self) -> Vec<String> {
        vec![
            format!("Data format: {:?}", self.data_format),
            format!(
                "Kernel shape:{:?} (strides:{:?}, padding:{:?}, dilations:{:?})",
                self.kernel_shape, self.strides, self.padding, self.dilations,
            ),
        ]
    }

    pub fn dilation(&self, geo_axis: usize) -> usize {
        self.dilations.as_ref().map(|d| d[geo_axis]).unwrap_or(1)
    }

    pub fn stride(&self, geo_axis: usize) -> usize {
        self.strides.as_ref().map(|s| s[geo_axis]).unwrap_or(1)
    }

    pub fn compute_geo(&self, input_full_shape: &[usize]) -> TractResult<(DataShape, Patch, DataShape)> {
        let input_shape = self.data_format.shape(input_full_shape.into())?;
        let output_inner_stride = match self.data_format {
            DataFormat::NCHW | DataFormat::CHW => 1,
            DataFormat::NHWC | DataFormat::HWC => {
                self.output_channel_override.clone().unwrap_or(*input_shape.c())
            }
        };
        let mut spec = PatchSpec::for_full_shape(self.data_format, input_full_shape)?
            .with_output_inner_stride(output_inner_stride)
            .with_kernel_shape(self.kernel_shape.clone())
            .with_padding(self.padding.clone());
        if let Some(strides) = self.strides.clone() {
            spec = spec.with_strides(strides);
        }
        if let Some(dilations) = self.dilations.clone() {
            spec = spec.with_dilations(dilations);
        }
        let patch = spec.into_patch();
        let output_shape = input_shape.fmt.from_n_c_hw(
            *input_shape.n().unwrap_or(&1),
            self.output_channel_override.unwrap_or(*input_shape.c()),
            &*patch.output_shape,
        )?;
        Ok((input_shape, patch, output_shape))
    }

    pub fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
        let ishape = self.data_format.shape(inputs[0].shape.to_tvec())?;
        let ones = tvec![1; ishape.hw_rank()];
        let computed = self.padding.compute(
            ishape.hw_dims(),
            &*self.kernel_shape,
            self.dilations.as_ref().unwrap_or(&ones),
            self.strides.as_ref().unwrap_or(&ones),
        );
        let spatial_dims = computed.into_iter().map(|d| d.output).collect::<TVec<TDim>>();
        let oshape = self.data_format.from_n_c_hw(
            ishape.n().cloned().unwrap_or(1.to_dim()),
            self.output_channel_override.map(|i| i.to_dim()).unwrap_or(ishape.c().clone()),
            spatial_dims,
        )?;
        Ok(tvec!(TypedFact::dt_shape(inputs[0].datum_type, &*oshape.shape)?))
    }

    pub fn pulsify(
        &self,
        _source: &NormalizedModel,
        node: &NormalizedNode,
        op: &dyn PulsedOp,
        target: &mut PulsedModel,
        mapping: &HashMap<OutletId, OutletId>,
    ) -> TractResult<TVec<OutletId>> {
        let input = mapping[&node.inputs[0]];
        let fact = target.outlet_fact(input)?.clone();
        let input_shape = self.data_format.shape(&*fact.shape)?;
        if Some(fact.axis) == input_shape.n_axis() {
            target.wire_node(&*node.name, dyn_clone::clone_box(op), &[input])
        } else if fact.axis == input_shape.c_axis() {
            bail!("Can not pulsify cnn pooling ops along the input channel axis");
        } else {
            let geo_axis = fact.axis - input_shape.h_axis();
            let stride = self.strides.as_ref().and_then(|v| v.get(geo_axis).cloned()).unwrap_or(1);
            let pulse = fact.pulse();
            if fact.pulse() % stride != 0 {
                bail!("Pulsificaton requires pulse to be a stride multiple")
            }
            let dilation = self.dilations.as_ref().map(|d| d[geo_axis]).unwrap_or(1);
            let kernel_len = (self.kernel_shape[geo_axis] - 1) * dilation;
            let overlap = (kernel_len + 1).saturating_sub(stride);
            let misalignment = fact.delay % pulse;
            let mut wire = input;

            if overlap > 0 || misalignment > 0 {
                let align_to = (overlap + fact.delay).div_ceil(stride) * stride;
                let delay = align_to - overlap - fact.delay;
                wire = target.wire_node(
                    format!("{}.Delay", node.name),
                    crate::pulse::delay::Delay::new(&fact, delay, overlap),
                    &[wire],
                )?[0];
            }
            target.wire_node(&*node.name, dyn_clone::clone_box(op), &[wire])
        }
    }

    pub fn dispose_n_axis(&self) -> PoolSpec {
        PoolSpec { data_format: self.data_format.dispose_n_axis(), ..self.clone() }
    }

    pub fn pulsed_output_facts(&self, inputs: &[&PulsedFact]) -> TractResult<TVec<PulsedFact>> {
        let ishape = self.data_format.shape(&inputs[0].shape)?;
        let ones = tvec![1; ishape.hw_rank()];
        let computed = self.padding.compute(
            ishape.hw_dims(),
            &*self.kernel_shape,
            self.dilations.as_ref().unwrap_or(&ones),
            self.strides.as_ref().unwrap_or(&ones),
        );
        let spatial_dims = computed.into_iter().map(|d| d.output).collect::<TVec<usize>>();
        let oshape = self.data_format.from_n_c_hw(
            ishape.n().cloned().unwrap_or(1),
            self.output_channel_override.unwrap_or(*ishape.c()),
            spatial_dims,
        )?;
        let mut fact = inputs[0].clone();
        let input_shape = self.data_format.shape(&*fact.shape)?;
        let geo_axis = fact.axis - input_shape.h_axis();
        let dilation = self.dilations.as_ref().map(|d| d[geo_axis]).unwrap_or(1);
        let kernel_len = (self.kernel_shape[geo_axis] - 1) * dilation;
        let stride = self.strides.as_ref().and_then(|v| v.get(geo_axis).cloned()).unwrap_or(1);
        fact.delay /= stride;
        fact.dim = (fact.dim.clone() - kernel_len.to_dim()).div_ceil(stride as u32);
        fact.shape = oshape.shape;
        Ok(tvec!(fact))
    }
}