1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
use crate::internal::*; use ndarray::prelude::*; use num_traits::Float; use crate::ops::cnn::pools::PoolSpec; use crate::ops::cnn::Patch; use crate::ops::nn::DataShape; #[derive(Debug, Clone, new, Default, Hash)] pub struct MaxPool { pub pool_spec: PoolSpec, pub with_index_outputs: Option<DatumType>, } tract_linalg::impl_dyn_hash!(MaxPool); impl MaxPool { fn to_fixed<T: Datum + Float>(&self, input_shape: &[usize]) -> TractResult<Box<dyn TypedOp>> { let (input_shape, patch, output_shape) = self.pool_spec.compute_geo(input_shape)?; let op = MaxPoolFixed::new(patch, input_shape, output_shape, self.with_index_outputs); Ok(Box::new(op)) } } impl Op for MaxPool { fn name(&self) -> Cow<str> { "MaxPool".into() } fn info(&self) -> TractResult<Vec<String>> { Ok(self.pool_spec.info()) } canonic!(); op_core_mir!(); op_as_typed_op!(); op_as_pulsed_op!(); } impl StatelessOp for MaxPool { fn eval(&self, inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> { let op = dispatch_floatlike!(MaxPool::to_fixed(inputs[0].datum_type())( self, inputs[0].shape() ))?; op.as_stateless().unwrap().eval(inputs) } } impl TypedOp for MaxPool { fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> { let mut facts = self.pool_spec.output_facts(inputs)?; if let Some(idt) = self.with_index_outputs { facts.push(facts[0].clone()); facts[1].datum_type = idt; } Ok(facts) } fn pulsify( &self, source: &NormalizedModel, node: &NormalizedNode, target: &mut PulsedModel, mapping: &HashMap<OutletId, OutletId>, _pulse: usize, ) -> TractResult<TVec<OutletId>> { self.pool_spec.pulsify(source, node, self, target, mapping) } fn codegen( &self, model: &TypedModel, node: &TypedNode, ) -> TractResult<Option<TypedModelPatch>> { let inputs = model.node_input_facts(node.id)?; if let Some(shape) = inputs[0].shape.as_finite() { let dt = inputs[0].datum_type; let op = dispatch_floatlike!(MaxPool::to_fixed(dt)(self, shape))?; return Ok(Some(TypedModelPatch::single_unary_op(model, node, op)?)); } Ok(None) } as_op!(); } impl PulsedOp for MaxPool { fn pulsed_output_facts(&self, inputs: &[&PulsedFact]) -> TractResult<TVec<PulsedFact>> { let mut facts = self.pool_spec.pulsed_output_facts(inputs)?; if let Some(idt) = self.with_index_outputs { facts.push(facts[0].clone()); facts[1].datum_type = idt; } Ok(facts) } as_op!(); pulsed_op_to_typed_op!(); } tract_linalg::impl_dyn_hash!(MaxPoolFixed); #[derive(Debug, Clone, new, Hash)] pub struct MaxPoolFixed { patch: Patch, input_shape: DataShape, output_shape: DataShape, with_index_outputs: Option<DatumType>, } impl Op for MaxPoolFixed { fn name(&self) -> Cow<str> { "MaxPool".into() } op_core_lir!(); op_as_typed_op!(); not_a_pulsed_op!(); } impl MaxPoolFixed { fn eval_t<T: Datum + Copy + num_traits::Bounded + PartialOrd>(&self, input: &Tensor) -> TractResult<TVec<Arc<Tensor>>> { let input: ArrayViewD<T> = input.to_array_view()?; let input_ptr = input.as_ptr(); let mut values = unsafe { ArrayD::<T>::uninitialized(&*self.output_shape.shape) }; let mut indices = if self.with_index_outputs.is_some() { Some(unsafe { ArrayD::<i32>::uninitialized(&*self.output_shape.shape) }) } else { None }; let n = *self.input_shape.n().unwrap_or(&1); let n_stride_i = self.input_shape.n_stride().unwrap_or(&0); let n_stride_o = self.output_shape.n_stride().unwrap_or(&0); unsafe { self.patch.visit_output(|visitor| { for n in 0..n { let input_offset = n * n_stride_i; let output_offset = n * n_stride_o; for c in 0..*self.input_shape.c() { let input_offset = input_offset + self.input_shape.c_stride() * c; let output_offset = output_offset + self.output_shape.c_stride() * c; let max = visitor .valid_offsets() .map(|v| (v, *input_ptr.offset(v + input_offset as isize))) .fold((0, T::min_value()), |acc, v| if acc.1 < v.1 { v } else { acc }); *values .as_mut_ptr() .offset(output_offset as isize + visitor.output_offset) = max.1; if let Some(ref mut indices) = indices { *indices .as_mut_ptr() .offset(output_offset as isize + visitor.output_offset) = max.0 as i32 / self.patch.spec.output_inner_stride as i32; } } } }); } if let Some(dt) = self.with_index_outputs { Ok(tvec!( values.into_arc_tensor(), indices.unwrap().into_tensor().cast_to_dt(dt)?.into_owned().into_arc_tensor() )) } else { Ok(tvec!(values.into_arc_tensor())) } } } impl StatelessOp for MaxPoolFixed { fn eval(&self, mut inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> { let input = args_1!(inputs); dispatch_numbers!(Self::eval_t(input.datum_type())(self, &*input)) } } impl TypedOp for MaxPoolFixed { as_op!(); fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> { let mut facts = tvec!(TypedFact::dt_shape(inputs[0].datum_type, &*self.output_shape.shape)?); if let Some(idt) = self.with_index_outputs { facts.push(facts[0].clone()); facts[1].datum_type = idt; } Ok(facts) } }