1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
use crate::internal::*;
use ndarray::prelude::*;
use num_traits::{AsPrimitive, Float};
use std::iter::Sum;

use crate::ops::cnn::pools::PoolSpec;
use crate::ops::cnn::Patch;
use crate::ops::nn::DataShape;

#[derive(Debug, Clone, new, Default)]
pub struct AvgPool {
    pub pool_spec: PoolSpec,
    pub count_include_pad: bool,
}

impl AvgPool {
    fn to_fixed<T: Datum + Float + Sum>(
        &self,
        input_shape: &[usize],
    ) -> TractResult<Box<dyn TypedOp>>
    where
        usize: AsPrimitive<T>,
    {
        let (input_shape, patch, output_shape) = self.pool_spec.compute_geo(input_shape);
        let op = AvgPoolFixed::<T>::new(patch, input_shape, output_shape, self.count_include_pad);
        Ok(Box::new(op))
    }
}

impl Op for AvgPool {
    fn name(&self) -> Cow<str> {
        "AvgPool".into()
    }

    fn info(&self) -> TractResult<Vec<String>> {
        Ok(self.pool_spec.info())
    }

    fn validation(&self) -> Validation {
        Validation::Rounding
    }

    canonic!();
    op_as_typed_op!();
    op_as_pulsed_op!();
}

impl StatelessOp for AvgPool {
    fn eval(&self, inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> {
        let op = dispatch_floatlike!(AvgPool::to_fixed(inputs[0].datum_type())(
            self,
            inputs[0].shape()
        ))?;
        op.as_stateless().unwrap().eval(inputs)
    }
}

impl TypedOp for AvgPool {
    fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
        self.pool_spec.output_facts(inputs)
    }

    fn pulsify(
        &self,
        source: &NormalizedModel,
        node: &NormalizedNode,
        target: &mut PulsedModel,
        mapping: &HashMap<OutletId, OutletId>,
        _pulse: usize,
    ) -> TractResult<TVec<OutletId>> {
        self.pool_spec.pulsify(source, node, self, target, mapping)
    }

    fn codegen(
        &self,
        model: &TypedModel,
        node: &TypedNode,
    ) -> TractResult<Option<TypedModelPatch>> {
        let inputs = model.node_input_facts(node.id)?;
        if let Some(shape) = inputs[0].shape.as_finite() {
            let dt = inputs[0].datum_type;
            let op = dispatch_floatlike!(AvgPool::to_fixed(dt)(self, shape))?;
            return Ok(Some(TypedModelPatch::single_unary_op(model, node, op)?));
        }
        Ok(None)
    }

    as_op!();
}

impl PulsedOp for AvgPool {
    fn pulsed_output_facts(&self, inputs: &[&PulsedFact]) -> TractResult<TVec<PulsedFact>> {
        self.pool_spec.pulsed_output_facts(inputs)
    }

    as_op!();
    pulsed_op_to_typed_op!();
}

#[derive(Debug, Clone, new)]
pub struct AvgPoolFixed<T: Datum + Float + Sum>
where
    usize: AsPrimitive<T>,
{
    patch: Patch,
    input_shape: DataShape,
    output_shape: DataShape,
    count_include_pad: bool,
    _casper: PhantomData<T>,
}

impl<T: Datum + Float + Sum> Op for AvgPoolFixed<T>
where
    usize: AsPrimitive<T>,
{
    fn name(&self) -> Cow<str> {
        format!("AvgPool::Fixed<{:?}>", T::datum_type()).into()
    }

    op_as_typed_op!();
    not_a_pulsed_op!();
}

impl<T: Datum + Float + Sum> StatelessOp for AvgPoolFixed<T>
where
    usize: AsPrimitive<T>,
{
    fn eval(&self, mut inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> {
        let input = args_1!(inputs);
        let input: ArrayViewD<T> = input.to_array_view()?;
        let input_ptr = input.as_ptr();

        let mut values = unsafe { ArrayD::<T>::uninitialized(&*self.output_shape.shape) };
        let n = *self.input_shape.n().unwrap_or(&1);
        let n_stride_i = self.input_shape.n_stride().unwrap_or(&0);
        let n_stride_o = self.output_shape.n_stride().unwrap_or(&0);
        unsafe {
            self.patch.visit_output(|visitor| {
                let div = if self.count_include_pad {
                    self.patch.standard_layout_data_field.len()
                } else {
                    visitor.valid_count()
                };
                let div = div.as_().recip();
                for n in 0..n {
                    let input_offset = n * n_stride_i;
                    let output_offset = n * n_stride_o;
                    for c in 0..*self.input_shape.c() {
                        let input_offset = input_offset + self.input_shape.c_stride() * c;
                        let output_offset = output_offset + self.output_shape.c_stride() * c;
                        let sum = visitor
                            .valid_offsets()
                            .map(|v| *input_ptr.offset(v + input_offset as isize))
                            .sum::<T>();

                        *values
                            .as_mut_ptr()
                            .offset(output_offset as isize + visitor.output_offset) = sum * div;
                    }
                }
            });
        }
        Ok(tvec!(values.into_arc_tensor()))
    }
}

impl<T: Datum + Float + Sum> TypedOp for AvgPoolFixed<T>
where
    usize: AsPrimitive<T>,
{
    fn output_facts(&self, _inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
        Ok(tvec!(TypedFact::dt_shape(T::datum_type(), &*self.output_shape.shape)?))
    }

    as_op!();
}