1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
use crate::internal::*; #[derive(Debug, Clone, new)] pub struct AddDims { pub axes: Vec<usize>, } impl AddDims { fn compute_shape<D: DimLike>(&self, input: &[D]) -> TVec<D> { let mut shape: TVec<D> = input.iter().cloned().collect(); for &axis in &self.axes { shape.insert(axis, D::one()) } shape } } impl Op for AddDims { fn name(&self) -> Cow<str> { "AddDims".into() } fn info(&self) -> TractResult<Vec<String>> { Ok(vec![format!("Axes: {:?}", self.axes)]) } canonic!(); op_as_typed_op!(); op_as_pulsed_op!(); } impl StatelessOp for AddDims { fn eval(&self, mut inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> { let input = args_1!(inputs); let shape = self.compute_shape(input.shape()); Ok(unsafe { tvec![input.into_tensor().into_shape(&*shape)?.into_arc_tensor()] }) } } impl InferenceRulesOp for AddDims { fn rules<'r, 'p: 'r, 's: 'r>( &'s self, s: &mut Solver<'r>, inputs: &'p [TensorProxy], outputs: &'p [TensorProxy], ) -> InferenceResult { check_output_arity(&outputs, 1)?; s.equals(&outputs[0].datum_type, &inputs[0].datum_type)?; s.equals(&outputs[0].rank, (&inputs[0].rank).bex() + self.axes.len() as i32)?; s.given(&inputs[0].shape, move |s, shape| { let output_shape = self.compute_shape(&shape); s.equals(&outputs[0].shape, output_shape) }) } inference_op_as_op!(); to_typed!(); } impl TypedOp for AddDims { typed_op_as_op!(); fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> { Ok(tvec!(TypedFact::dt_shape( inputs[0].datum_type, self.compute_shape(&*inputs[0].shape.to_tvec()).as_ref(), )?)) } fn axes_info(&self, _model: &TypedModel, node: &TypedNode) -> TractResult<AxesInfo> { let mut i = 0; let mut axes = tvec!(); for out in 0..node.outputs[0].fact.shape.rank() { if !self.axes.contains(&out) { axes.push(AxisInfo { inputs: tvec!(Some(i)), outputs: tvec!(Some(out)), period: 1, disposable: true, }); i += 1; } } Ok(axes.into_iter().collect()) } fn pulsify( &self, _source: &NormalizedModel, node: &NormalizedNode, target: &mut PulsedModel, mapping: &HashMap<OutletId, OutletId>, _pulse: usize, ) -> TractResult<TVec<OutletId>> { let input = mapping[&node.inputs[0]]; target.wire_node(&*node.name, self.clone(), &[input]) } } impl PulsedOp for AddDims { fn pulsed_output_facts(&self, inputs: &[&PulsedFact]) -> TractResult<TVec<PulsedFact>> { let mut fact = inputs[0].clone(); fact.shape = self.compute_shape(&*inputs[0].shape); fact.axis += self.axes.iter().filter(|&ax| *ax <= fact.axis).count(); Ok(tvec!(fact)) } pulsed_op_as_op!(); pulsed_op_to_typed_op!(); }