1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
use super::*;

#[derive(Debug, Clone, new, Default)]
pub struct Inference {
    pub body: InferenceModel,
    pub input_mapping: Vec<InputMapping<()>>,
    pub output_mapping: Vec<OutputMapping<(), TDim>>,
    pub seq_length_input_slot: Option<usize>,
}

impl Op for Inference {
    fn name(&self) -> Cow<str> {
        "Scan::Inference".into()
    }

    fn nested_models(&self) -> Vec<(Cow<str>, &dyn Model)> {
        vec![("loop".into(), &self.body)]
    }

    not_a_typed_op!();
}

impl StatefullOp for Inference {
    fn state(
        &self,
        session: &mut SessionState,
        node_id: usize,
    ) -> TractResult<Option<Box<dyn OpState>>> {
        self.to_typed_scan()?.state(session, node_id)
    }
}

impl Inference {
    pub(super) fn to_typed_scan(&self) -> TractResult<Box<Typed>> {
        let typed_model = self.body.clone().into_typed()?;
        let input_mapping = self
            .input_mapping
            .iter()
            .enumerate()
            .map(|(ix, im)| {
                Ok(match im {
                    InputMapping::Scan { axis, slot, chunk: _ } => InputMapping::Scan {
                        axis: *axis,
                        slot: *slot,
                        chunk: typed_model.input_fact(ix)?.shape.dim(*axis),
                    },
                    InputMapping::Full { slot } => InputMapping::Full { slot: *slot },
                    InputMapping::State { initializer } => {
                        InputMapping::State { initializer: initializer.clone() }
                    }
                })
            })
            .collect::<TractResult<_>>()?;
        let output_mapping = self
            .output_mapping
            .iter()
            .enumerate()
            .map(|(ix, im)| {
                Ok(OutputMapping {
                    state: im.state,
                    axis: im.axis,
                    full_slot: im.full_slot,
                    full_dim_hint: im.full_dim_hint.clone(),
                    last_value_slot: im.last_value_slot,
                    chunk: typed_model.input_fact(ix)?.shape.dim(im.axis),
                })
            })
            .collect::<TractResult<_>>()?;
        Ok(Box::new(Typed::new(
            typed_model,
            input_mapping,
            output_mapping,
            self.seq_length_input_slot,
        )?))
    }
    fn unify_scanning_tensor_fact(
        outer: &mut TensorFact,
        inner: &mut TensorFact,
        outer_scan_axis: usize,
    ) -> TractResult<()> {
        outer.datum_type.unify_with_mut(&mut inner.datum_type)?;
        let rank =
            outer.shape.rank().concretize().or(inner.shape.rank().concretize()).map(|r| r as usize);
        if let Some(rank) = rank {
            outer.shape.unify_with(&ShapeFact::closed(tvec!(GenericFact::Any; rank as usize)))?;
            inner.shape.unify_with(&ShapeFact::closed(tvec!(GenericFact::Any; rank as usize)))?;
            for axis in 0..rank {
                if axis != outer_scan_axis {
                    let value = outer.shape.dim(axis).unwrap().concretize().or(inner
                        .shape
                        .dim(axis)
                        .unwrap()
                        .concretize());
                    if let Some(value) = value {
                        outer.shape.set_dim(axis, value.clone());
                        inner.shape.set_dim(axis, value);
                    }
                }
            }
        }
        Ok(())
    }

    fn unify_facts(
        &mut self,
        inputs: &mut [TensorFact],
        outputs: &mut [TensorFact],
    ) -> TractResult<()> {
        let hidden_state_len = self.input_mapping.iter().filter_map(|m| m.as_state()).count();
        for state_ix in 0..hidden_state_len {
            trace!("Unify hidden state #{}", state_ix);
            let (inner_model_input_ix, initializer) = self
                .input_mapping
                .iter()
                .enumerate()
                .filter_map(|(ix, m)| m.as_state().map(|init| (ix, init)))
                .nth(state_ix)
                .unwrap();
            let inner_model_output_ix = self
                .output_mapping
                .iter()
                .enumerate()
                .filter(|(_ix, map)| map.state)
                .nth(state_ix)
                .unwrap()
                .0;
            match initializer {
                StateInitializer::Value(v) => {
                    let fact = TensorFact::dt_shape_from_tensor(v);
                    self.body.set_input_fact(inner_model_input_ix, fact.clone())?;
                    self.body.set_output_fact(inner_model_output_ix, fact)?;
                }
                StateInitializer::FromInput(outer_input_ix) => {
                    let mut facts = self.body.outlets_fact_mut(&[
                        self.body.input_outlets()?[inner_model_input_ix],
                        self.body.output_outlets()?[inner_model_output_ix],
                    ])?;
                    facts.push(&mut inputs[*outer_input_ix]);
                    Fact::unify_all(&mut facts)?;
                }
            }
        }
        for (ix, i) in self.input_mapping.iter().enumerate() {
            match i {
                InputMapping::State { .. } => {}
                InputMapping::Full { slot } => {
                    inputs[*slot].unify_with(self.body.input_fact_mut(ix)?)?;
                }
                InputMapping::Scan { slot, axis, .. } => {
                    let incoming = &mut inputs[*slot];
                    let inner = self.body.input_fact_mut(ix)?;
                    Self::unify_scanning_tensor_fact(incoming, inner, *axis)?;
                }
            }
        }
        for (ix, i) in self.output_mapping.iter().enumerate() {
            if let Some(slot) = i.full_slot {
                let outgoing = &mut outputs[slot];
                let inner = self.body.output_fact_mut(ix)?;
                Self::unify_scanning_tensor_fact(outgoing, inner, i.axis)?;
            }
            if let Some(slot) = i.last_value_slot {
                outputs[slot].unify_with(self.body.output_fact_mut(ix)?)?;
            }
        }
        Ok(())
    }
}

impl InferenceOp for Inference {
    fn infer_facts(
        &mut self,
        inputs: TVec<&TensorFact>,
        outputs: TVec<&TensorFact>,
        _observed: TVec<&TensorFact>,
    ) -> TractResult<(TVec<TensorFact>, TVec<TensorFact>, TVec<TensorFact>)> {
        let body_inputs = self.body.input_outlets()?.len();
        let body_outputs = self.body.output_outlets()?.len();
        let expected_op_inputs = self.input_mapping.iter().filter(|m| !m.invisible()).count();
        let expected_op_outputs = self.output_mapping.iter().filter(|m| !m.invisible()).count();
        if inputs.len() != expected_op_inputs {
            bail!("Scan receives {} inputs, mappings expects {}", inputs.len(), expected_op_inputs)
        }
        if body_inputs != self.input_mapping.len() {
            bail!(
                "Scan body expect {} inputs, mappings expects {}",
                body_inputs,
                self.input_mapping.len()
            )
        }
        if outputs.len() != expected_op_outputs {
            bail!("Scan has {} outputs, mappings expects {}", outputs.len(), expected_op_outputs);
        }
        if body_outputs != self.output_mapping.len() {
            bail!(
                "Scan body expect {} outputs, mappings expects {}",
                body_outputs,
                self.output_mapping.len()
            )
        }
        let mut inputs: TVec<TensorFact> = inputs.into_iter().cloned().collect();
        let mut outputs: TVec<TensorFact> = outputs.into_iter().cloned().collect();
        self.unify_facts(&mut inputs, &mut outputs)?;
        trace!("Starting inner model analyse");
        for (ix, input) in self.body.input_outlets()?.iter().enumerate() {
            trace!("  Input inner model: {} {:?} {:?}", ix, input, self.body.input_fact(ix));
        }
        for (ix, output) in self.body.output_outlets()?.iter().enumerate() {
            trace!("  Output inner model: {} {:?} {:?}", ix, output, self.body.output_fact(ix));
        }
        self.body
            .analyse(false)
            .map_err(|e| format!("analysing inner model: {}\n{:#?}", e, self.body))?;
        trace!("Finished inner model analyse");
        self.unify_facts(&mut inputs, &mut outputs)?;
        Ok((inputs, outputs, tvec!()))
    }

    fn to_typed(
        &self,
        _source: &InferenceModel,
        node: &InferenceNode,
        target: &mut TypedModel,
        mapping: &HashMap<OutletId, OutletId>,
    ) -> TractResult<TVec<OutletId>> {
        let inputs = node.inputs.iter().map(|m| mapping[m]).collect::<TVec<_>>();
        target.wire_node(&*node.name, self.to_typed_scan()? as Box<dyn TypedOp>, &*inputs)
    }

    fn nboutputs(&self) -> TractResult<usize> {
        Ok(self.output_mapping.iter().filter(|om| !om.invisible()).count())
    }

    inference_op_as_op!();
}