1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
use crate::internal::*; use ndarray::prelude::*; #[derive(Debug, Clone, new, Default)] pub struct Lrn { alpha: f32, beta: f32, bias: f32, size: usize, } impl Lrn { fn eval_t<T: Datum + ::num_traits::Float + ::num_traits::FromPrimitive + ::std::iter::Sum>( &self, input: Arc<Tensor>, ) -> TractResult<TVec<Arc<Tensor>>> { let input = input.to_array_view::<T>()?; let channels = input.shape()[1]; let output = Array::from_shape_fn(input.shape(), |mut coords| { let c = coords[1]; let x = input[&coords]; let c_min = c.saturating_sub((self.size - 1) / 2); let c_max = (c + ((self.size - 1).div_ceil(2))).min(channels - 1); let square_sum: T = (c_min..=c_max) .map(|c| { coords[1] = c; input[&coords].powi(2) }) .sum(); x / (T::from(self.bias).unwrap() + T::from(self.alpha).unwrap() / T::from(self.size).unwrap() * square_sum) .powf(T::from(self.beta).unwrap()) }); Ok(tvec!(output.into_arc_tensor())) } } impl Op for Lrn { fn name(&self) -> Cow<str> { "Lrn".into() } op_as_typed_op!(); } impl StatelessOp for Lrn { fn eval(&self, mut inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> { let input = args_1!(inputs); dispatch_floatlike!(Self::eval_t(input.datum_type())(self, input)) } } impl InferenceRulesOp for Lrn { fn rules<'r, 'p: 'r, 's: 'r>( &'s self, s: &mut Solver<'r>, inputs: &'p [TensorProxy], outputs: &'p [TensorProxy], ) -> InferenceResult { check_input_arity(&inputs, 1)?; check_output_arity(&outputs, 1)?; s.equals(&inputs[0].datum_type, &outputs[0].datum_type)?; s.equals(&inputs[0].shape, &outputs[0].shape)?; Ok(()) } inference_op_as_op!(); to_typed!(); } impl TypedOp for Lrn { typed_op_as_op!(); fn output_facts(&self, inputs: &[&TypedTensorInfo]) -> TractResult<TVec<TypedTensorInfo>> { Ok(tvec!(inputs[0].clone())) } }