1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
use crate::internal::*;
use crate::ops;
use ndarray::prelude::*;

mod array;
mod conv;
mod scan;

#[derive(Debug, Clone, new, Default, PartialEq)]
pub struct Downsample {
    axis: usize,
    stride: usize,
    modulo: usize,
}

impl Downsample {
    fn eval_t<T: Datum>(&self, input: &Tensor) -> TractResult<Arc<Tensor>> {
        let input = input.to_array_view::<T>()?;
        let sampled = if self.modulo < input.shape()[self.axis] {
            input
                .slice_axis(
                    Axis(self.axis),
                    ndarray::Slice::new(self.modulo as isize, None, self.stride as isize),
                )
                .to_owned()
                .into_arc_tensor()
        } else {
            let mut shape = input.shape().to_vec();
            shape[self.axis] = 0;
            unsafe { Tensor::uninitialized::<T>(&shape)?.into_arc_tensor() }
        };
        Ok(sampled)
    }

    pub(crate) fn transform_dim(&self, input_dim: &TDim) -> TDim {
        (input_dim.clone() - self.modulo).div_ceil(self.stride.into())
    }

    pub(crate) fn transform_fact(
        &self,
        input_fact: &TypedTensorInfo,
    ) -> TractResult<TypedTensorInfo> {
        let mut downed = input_fact.clone();
        let down_len = self.transform_dim(&input_fact.shape.dim(self.axis));
        downed.shape.set_dim(self.axis, down_len.clone())?;
        Ok(downed)
    }
}

impl Op for Downsample {
    fn name(&self) -> Cow<str> {
        "Downsample".into()
    }

    fn info(&self) -> TractResult<Vec<String>> {
        Ok(vec![format!("axis:{} stride:{} modulo:{}", self.axis, self.stride, self.modulo)])
    }

    fn declutter(
        &self,
        model: &TypedModel,
        node: &TypedNode,
    ) -> TractResult<Option<TypedModelPatch>> {
        if self.stride == 1 {
            return Ok(Some(TypedModelPatch::shunt_one_op(model, node)?));
        }
        pull_downsample_up(model, node)
    }

    impl_op_same_as!();
    op_as_typed_op!();
}

impl StatelessOp for Downsample {
    fn eval(&self, mut inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> {
        let input = args_1!(inputs);
        Ok(tvec!(dispatch_datum!(Self::eval_t(input.datum_type())(self, &*input))?))
    }
}

impl InferenceRulesOp for Downsample {
    fn rules<'r, 'p: 'r, 's: 'r>(
        &'s self,
        s: &mut Solver<'r>,
        inputs: &'p [TensorProxy],
        outputs: &'p [TensorProxy],
    ) -> InferenceResult {
        check_input_arity(&inputs, 1)?;
        check_output_arity(&outputs, 1)?;
        s.equals(&inputs[0].rank, &outputs[0].rank)?;
        s.equals(&inputs[0].datum_type, &outputs[0].datum_type)?;
        s.given(&inputs[0].rank, move |s, r| {
            for i in 0..(r as usize) {
                if i == self.axis {
                    s.given(&inputs[0].shape[i], move |s, d| {
                        s.equals(
                            &outputs[0].shape[i],
                            (d - self.modulo).div_ceil(self.stride.to_dim()),
                        )
                    })?
                } else {
                    s.equals(&inputs[0].shape[i], &outputs[0].shape[i])?
                }
            }
            Ok(())
        })
    }

    inference_op_as_op!();
    to_typed!();
}

impl TypedOp for Downsample {
    typed_op_as_op!();

    fn output_facts(&self, inputs: &[&TypedTensorInfo]) -> TractResult<TVec<TypedTensorInfo>> {
        let mut downed = inputs[0].clone();
        let down_len = self.transform_dim(&downed.shape.dim(self.axis));
        downed.shape.set_dim(self.axis, down_len.clone())?;
        Ok(tvec!(downed))
    }

    fn pulsify(
        &self,
        _source: &NormalizedModel,
        node: &NormalizedNode,
        target: &mut PulsedModel,
        mapping: &HashMap<OutletId, OutletId>,
        _pulse: usize,
    ) -> TractResult<TVec<OutletId>> {
        let input = mapping[&node.inputs[0]];
        let mut fact = target.outlet_fact(input)?.clone();
        if fact.pulse() % self.stride != 0 {
            bail!("Pulsificaton requires pulse to be a stride multiple")
        }
        fact.shape[self.axis] /= self.stride;
        fact.dim = fact.dim.div_ceil(self.stride.to_dim());
        let id = target.chain_after(input, &*node.name, self.clone(), tvec!(fact))?;
        Ok(tvec!(OutletId::new(id, 0)))
    }
}

fn pull_downsample_up(
    model: &TypedModel,
    down_node: &TypedNode,
) -> TractResult<Option<TypedModelPatch>> {
    let down_op = down_node.op_as::<Downsample>().unwrap();
    if let Some(prec) = model.single_prec(down_node.id)? {
        let invariants = prec.op().axes_info(model, prec)?;
        debug!("Consider pull {:?} over {:?} (invariants: {:?})", down_op, prec, invariants);
        if let Some(above_axis) = invariants.unary_track_axis_up(down_op.axis, true) {
            let mut patch = TypedModelPatch::default();
            let mut inputs = vec![];
            for (ix, &oo) in prec.inputs.iter().enumerate() {
                let source = patch.tap_model(model, oo)?;
                let mut op = down_op.clone();
                op.axis = above_axis;
                let ds = patch.wire_node(format!("{}-{}", prec.name, ix), op, [source].as_ref())?;
                inputs.push(ds[0]);
            }
            let other = patch.wire_node(&*prec.name, prec.op.clone(), &*inputs)?;
            patch.shunt_outside(OutletId::new(down_node.id, 0), other[0])?;
            return Ok(Some(patch));
        } else if let Some(crop_op) = prec.op_as::<ops::array::Slice<TDim>>() {
            return array::pull_downsample_over_slice(model, prec, crop_op, down_node, down_op);
        } else if let Some(crop_op) = prec.op_as::<ops::array::Slice<usize>>() {
            return array::pull_downsample_over_slice(model, prec, crop_op, down_node, down_op);
        } else if let Some(other_op) = prec.op_as::<ops::array::RmDims>() {
            return array::pull_downsample_over_rmdims(model, prec, other_op, down_node, down_op);
        } else if let Some(other_op) = prec.op_as::<ops::array::AddDims>() {
            return array::pull_downsample_over_adddims(model, prec, other_op, down_node, down_op);
        } else if let Some(conv_op) = prec.op_as::<ops::cnn::conv::ConvUnary>() {
            return conv::fuse_downsample_into_conv(model, prec, conv_op, down_node, down_op);
        } else if let Some(other_op) = prec.op_as::<ops::scan::Typed>() {
            return scan::pull_downsample_over_scan(model, prec, other_op, down_node, down_op);
        }
    }
    Ok(None)
}