1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
use crate::internal::*;
#[derive(Debug, Clone, new)]
pub struct AddDims {
pub axes: Vec<usize>,
}
impl AddDims {
fn compute_shape<D: DimLike>(&self, input: &[D]) -> TVec<D> {
let mut shape: TVec<D> = input.iter().cloned().collect();
for &axis in &self.axes {
shape.insert(axis, D::one())
}
shape
}
fn eval_t<T: Datum>(&self, input: Arc<Tensor>) -> TractResult<TVec<Arc<Tensor>>> {
let shape = self.compute_shape(input.shape());
Ok(tvec![input.into_tensor().into_array::<T>()?.into_shape(&*shape)?.into_arc_tensor()])
}
}
impl Op for AddDims {
fn name(&self) -> Cow<str> {
"AddDims".into()
}
fn info(&self) -> TractResult<Vec<String>> {
Ok(vec![format!("Axes: {:?}", self.axes)])
}
fn axes_info(&self, _model: &TypedModel, node: &TypedNode) -> TractResult<AxesInfo> {
let mut i = 0;
let mut axes = tvec!();
for out in 0..node.outputs[0].fact.shape.rank() {
if !self.axes.contains(&out) {
axes.push(AxisInfo {
inputs: tvec!(Some(i)),
outputs: tvec!(Some(out)),
period: 1,
disposable: true,
});
i += 1;
}
}
Ok(axes.into_iter().collect())
}
canonic!();
op_as_typed_op!();
}
impl StatelessOp for AddDims {
fn eval(&self, mut inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> {
let input = args_1!(inputs);
dispatch_datum!(Self::eval_t(input.datum_type())(self, input))
}
}
impl InferenceRulesOp for AddDims {
fn rules<'r, 'p: 'r, 's: 'r>(
&'s self,
s: &mut Solver<'r>,
inputs: &'p [TensorProxy],
outputs: &'p [TensorProxy],
) -> InferenceResult {
check_output_arity(&outputs, 1)?;
s.equals(&outputs[0].datum_type, &inputs[0].datum_type)?;
s.equals(&outputs[0].rank, (&inputs[0].rank).bex() + self.axes.len() as i32)?;
s.given(&inputs[0].shape, move |s, shape| {
let output_shape = self.compute_shape(&shape);
s.equals(&outputs[0].shape, output_shape)
})
}
inference_op_as_op!();
to_typed!();
}
impl TypedOp for AddDims {
typed_op_as_op!();
fn output_facts(&self, inputs: &[&TypedTensorInfo]) -> TractResult<TVec<TypedTensorInfo>> {
Ok(tvec!(TypedTensorInfo::dt_shape(
inputs[0].datum_type,
self.compute_shape(&*inputs[0].shape.to_tvec()).as_ref(),
)?))
}
fn pulsify(
&self,
_source: &NormalizedModel,
node: &NormalizedNode,
target: &mut PulsedModel,
mapping: &HashMap<OutletId, OutletId>,
_pulse: usize,
) -> TractResult<TVec<OutletId>> {
let input = mapping[&node.inputs[0]];
let mut fact = target.outlet_fact(input)?.clone();
fact.shape = self.compute_shape(&fact.shape);
fact.axis += self.axes.iter().filter(|&ax| *ax <= fact.axis).count();
let id = target.chain_after(input, &*node.name, self.clone(), tvec!(fact))?;
Ok(tvec!(OutletId::new(id, 0)))
}
}