1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
use crate::internal::*;
use ndarray::*;
#[derive(Debug, Clone, new, Default)]
pub struct Tile;
impl Tile {
fn eval_t<T: Datum + Copy>(
&self,
data: &Arc<Tensor>,
indices: &[usize],
) -> TractResult<Arc<Tensor>> {
let data = data.to_array_view::<T>()?;
let output_shape: TVec<usize> =
data.shape().iter().zip(indices.iter()).map(|(&d, &m)| d * m as usize).collect();
let output = ndarray::ArrayD::from_shape_fn(&*output_shape, |coords| {
let coords: Vec<usize> =
coords.slice().iter().zip(data.shape().iter()).map(|(&x, &d)| x % d).collect();
data[&*coords]
});
Ok(output.into_arc_tensor())
}
}
impl Op for Tile {
fn name(&self) -> Cow<str> {
"Tile".into()
}
}
impl StatelessOp for Tile {
fn eval(&self, mut inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> {
let (data, multipliers) = args_2!(inputs);
let multipliers: TVec<usize> = multipliers
.cast_to::<i32>()?
.to_array_view::<i32>()?
.iter()
.map(|&x| x as usize)
.collect();
Ok(tvec!(dispatch_numbers!(Self::eval_t(data.datum_type())(&self, &data, &*multipliers))?))
}
}
impl InferenceRulesOp for Tile {
fn rules<'r, 'p: 'r, 's: 'r>(
&'s self,
s: &mut Solver<'r>,
inputs: &'p [TensorProxy],
outputs: &'p [TensorProxy],
) -> InferenceResult {
check_input_arity(&inputs, 2)?;
check_output_arity(&outputs, 1)?;
s.equals(&inputs[0].datum_type, &outputs[0].datum_type)?;
s.equals(&inputs[0].rank, &outputs[0].rank)?;
s.equals(&inputs[1].rank, 1)?;
s.equals(&inputs[1].shape[0], inputs[0].rank.bex().to_dim())?;
s.given(&inputs[1].value, move |s, mult| {
for (ix, &m) in mult.cast_to::<i32>()?.as_slice::<i32>()?.iter().enumerate() {
s.equals(m * inputs[0].shape[ix].bex(), &outputs[0].shape[ix])?;
}
Ok(())
})?;
Ok(())
}
}