1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
use crate::internal::*;
use crate::ops::identity::Identity;
use ndarray::*;
#[derive(Debug, Clone, new, Default)]
pub struct Slice {
prune: Vec<(usize, usize)>,
}
impl Slice {
fn eval_t<T: Datum>(&self, input: Arc<Tensor>) -> TractResult<Arc<Tensor>> {
let input = input.to_array_view::<T>()?;
let slice_spec: Vec<SliceOrIndex> = self
.prune
.iter()
.map(|&(a, b)| SliceOrIndex::Slice {
start: a as isize,
end: if b != 0 { Some(-(b as isize)) } else { None },
step: 1,
})
.collect();
let slice_info = SliceInfo::<_, IxDyn>::new(slice_spec).unwrap();
let slice = input.slice(&slice_info.as_ref());
Ok(slice.to_owned().into_arc_tensor())
}
}
impl Op for Slice {
fn name(&self) -> Cow<str> {
"Slice".into()
}
fn pulsify(
&self,
_source: &NormalizedModel,
node: &NormalizedNode,
target: &mut PulsedModel,
mapping: &HashMap<OutletId, OutletId>,
) -> TractResult<TVec<OutletId>> {
let input = mapping[&node.inputs[0]];
let fact = target.outlet_fact(input)?;
if self.prune.iter().enumerate().all(|(ax, &(a, b))| ax == fact.axis || (a == 0 && b == 0))
{
let (before, after) = self.prune[fact.axis];
let mut fact = fact.clone();
fact.delay += before;
fact.dim -= before.to_dim() + after.to_dim();
let id = target.chain_after(input, &*node.name, Identity::default(), tvec!(fact))?;
return Ok(tvec!(OutletId::new(id, 0)));
}
bail!("Slice only support pulsify on streaming axis")
}
}
impl StatelessOp for Slice {
fn eval(&self, mut inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> {
let input = args_1!(inputs);
Ok(tvec!(dispatch_datum!(Self::eval_t(input.datum_type())(self, input))?))
}
}
impl InferenceRulesOp for Slice {
fn rules<'r, 'p: 'r, 's: 'r>(
&'s self,
s: &mut Solver<'r>,
inputs: &'p [TensorProxy],
outputs: &'p [TensorProxy],
) -> InferenceResult {
check_input_arity(&inputs, 1)?;
check_output_arity(&outputs, 1)?;
s.equals(&inputs[0].datum_type, &outputs[0].datum_type)?;
s.equals(&inputs[0].rank, &outputs[0].rank)?;
for (ix, &(a, b)) in self.prune.iter().enumerate() {
s.equals(&inputs[0].shape[ix], outputs[0].shape[ix].bex() + a.to_dim() + b.to_dim())?;
}
Ok(())
}
}