1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
use ndarray::prelude::*;
use num_traits::AsPrimitive;

use crate::internal::*;

#[derive(Debug, Clone, new)]
pub struct Shape {
    dt: DatumType,
}

impl Shape {
    pub fn coerce_to<T>(shape: &[usize]) -> TractResult<Arc<Tensor>>
    where
        T: Copy + Datum,
        usize: AsPrimitive<T>,
    {
        let array = Array1::from_vec(shape.iter().map(|i| i.as_()).collect());
        Ok(array.into_arc_tensor())
    }
}

impl Op for Shape {
    fn name(&self) -> Cow<str> {
        "Shape".into()
    }
}

impl StatelessOp for Shape {
    /// Evaluates the operation given the input tensors.
    fn eval(&self, inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> {
        let shape = inputs[0].shape();
        Ok(tvec![dispatch_numbers!(Self::coerce_to(self.dt)(&shape))?])
    }
}

impl InferenceRulesOp for Shape {
    fn rules<'r, 'p: 'r, 's: 'r>(
        &'s self,
        s: &mut Solver<'r>,
        inputs: &'p [TensorProxy],
        outputs: &'p [TensorProxy],
    ) -> InferenceResult {
        check_input_arity(&inputs, 1)?;
        check_output_arity(&outputs, 1)?;
        s.equals(&outputs[0].rank, 1)?;
        s.given(&inputs[0].rank, move |s, r| s.equals(&outputs[0].shape[0], r.to_dim()))?;
        s.given(&outputs[0].shape[0], move |s, r| {
            if let Ok(d) = r.to_integer() {
                s.equals(&inputs[0].rank, d)?;
            }
            Ok(())
        })?;
        s.given(&inputs[0].shape, move |s, shape| {
            if shape.iter().any(|&d| d.to_integer().is_err()) {
                s.equals(&outputs[0].datum_type, DatumType::TDim)?;
                let array1: Array1<TDim> = Array1::from_iter(shape);
                let tensor = array1.into_arc_tensor();
                s.equals(&outputs[0].value, tensor)
            } else if self.dt == DatumType::I64 {
                s.equals(&outputs[0].datum_type, DatumType::I64)?;
                let array1: Array1<i64> = Array1::from_vec(
                    shape.iter().map(|&i| i.to_integer().unwrap() as i64).collect(),
                );
                let tensor = array1.into_arc_tensor();
                s.equals(&outputs[0].value, tensor)
            } else {
                s.equals(&outputs[0].datum_type, DatumType::I32)?;
                let array1: Array1<i32> = Array1::from_vec(
                    shape.iter().map(|&i| i.to_integer().unwrap() as i32).collect(),
                );
                let tensor = array1.into_arc_tensor();
                s.equals(&outputs[0].value, tensor)
            }
        })
    }
}

/*
#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn shape_inference_1() {
        let input = TensorFact {
            datum_type: typefact!(DatumType::F32),
            shape: shapefact![1, _, _; ..],
            value: valuefact!(_),
        };

        let output = TensorFact {
            datum_type: typefact!(DatumType::TDim),
            shape: shapefact![_],
            value: valuefact!(_),
        };

        assert_forward!(Shape::new(DatumType::I32), input, output);
    }

    #[test]
    fn shape_inference_2() {
        let input = TensorFact {
            datum_type: typefact!(DatumType::F32),
            shape: shapefact![1, _, _],
            value: valuefact!(_),
        };

        let output = TensorFact {
            datum_type: typefact!(DatumType::TDim),
            shape: shapefact![3],
            value: valuefact!(_),
        };

        assert_forward!(Shape::new(DatumType::I32), input, output);
    }

    #[test]
    fn shape_inference_3() {
        let input = TensorFact {
            datum_type: typefact!(DatumType::F32),
            shape: shapefact![1, 2, 3],
            value: valuefact!(_),
        };

        let output = TensorFact {
            datum_type: typefact!(DatumType::TDim),
            shape: shapefact![3],
            value: valuefact!(Tensor::dims(&[3], &[1.to_dim(), 2.to_dim(), 3.to_dim()]).unwrap()),
        };

        assert_forward!(Shape::new(DatumType::I32), input, output);
    }

    #[test]
    fn shape_inference_4() {
        let input = TensorFact {
            datum_type: typefact!(_),
            shape: shapefact![1, 2, 3],
            value: valuefact!(_),
        };

        let output = TensorFact {
            datum_type: typefact!(DatumType::TDim),
            shape: shapefact![3],
            value: valuefact!(Tensor::dims(&[3], &[1.to_dim(), 2.to_dim(), 3.to_dim()]).unwrap()),
        };

        assert_backward!(Shape::new(DatumType::I32), input, output);
    }
}
*/