tract_core/ops/array/
range.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
use tract_num_traits::AsPrimitive;
use tract_num_traits::Zero;

use crate::internal::*;

use super::Slice;

#[derive(Debug, Default, Clone, new, Hash)]
pub struct Range {
    len: TDim,
}

impl Op for Range {
    fn name(&self) -> Cow<str> {
        "Range".into()
    }

    op_as_typed_op!();
}

impl EvalOp for Range {
    fn is_stateless(&self) -> bool {
        true
    }

    fn eval_with_session(
        &self,
        session: &SessionState,
        inputs: TVec<TValue>,
    ) -> TractResult<TVec<TValue>> {
        let (start, end, step) = args_3!(inputs);
        Ok(tvec!(self.make(&start, &end, &step, &session.resolved_symbols)?.into_tvalue()))
    }
}

impl Range {
    fn make_t<T: Datum + for<'a> std::ops::Add<&'a T, Output = T>>(
        start: &Tensor,
        step: &Tensor,
        len: usize,
    ) -> TractResult<Tensor> {
        unsafe {
            let mut result = Tensor::uninitialized::<T>(&[len])?;
            let mut v = start.to_scalar::<T>()?.clone();
            let step = step.to_scalar::<T>()?;
            for i in 0..len {
                result.as_slice_mut_unchecked::<T>()[i] = v.clone();
                v = v + step;
            }
            Ok(result)
        }
    }

    fn make(
        &self,
        start: &Tensor,
        end: &Tensor,
        step: &Tensor,
        values: &SymbolValues,
    ) -> TractResult<Tensor> {
        if start.datum_type() == TDim::datum_type() {
            let len = {
                let start = start.to_scalar::<TDim>()?.eval(values).to_i64()?;
                let end = end.to_scalar::<TDim>()?.eval(values).to_i64()?;
                let step = step.to_scalar::<TDim>()?.eval(values).to_i64()?;
                #[allow(clippy::cast_abs_to_unsigned)]
                ((end - start).abs() as usize).divceil(step.abs() as usize)
            };
            Self::make_t::<TDim>(start, step, len)
        } else {
            let len = dispatch_numbers!(Self::len_for_numbers(start.datum_type())(
                self, start, end, step
            ))?;
            dispatch_numbers!(Self::make_t(start.datum_type())(start, step, len))
        }
    }

    fn len_for_numbers<T: Datum + AsPrimitive<f64>>(
        &self,
        start: &Tensor,
        end: &Tensor,
        step: &Tensor,
    ) -> TractResult<usize> {
        let start = start.to_scalar::<T>()?;
        let end = end.to_scalar::<T>()?;
        let step = step.to_scalar::<T>()?;
        Ok(((end.as_() - start.as_()) / (step.as_())).ceil() as usize)
    }
}

impl TypedOp for Range {
    fn declutter(
            &self,
            model: &TypedModel,
            node: &TypedNode,
        ) -> TractResult<Option<TypedModelPatch>> {
        let Some(succ) = model.single_succ(node.id)? else { return Ok(None) };
        let Some(slice) = succ.op_as::<Slice>() else { return Ok(None) };
        if slice.start.is_zero() && slice.end.is_one() {
            let mut patch = TypedModelPatch::default();
            let wire = patch.tap_model(model, node.inputs[0])?;
            let wire = patch.wire_node(&node.name, AxisOp::Add(0), &[wire])?;
            patch.shunt_outside(model, succ.id.into(), wire[0])?;
            return Ok(Some(patch))
        }
        Ok(None)
    }

    fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
        let [start, end, step] = inputs else {
            bail!("Expects three inputs");
        };
        ensure!(start.datum_type() == end.datum_type());
        ensure!(start.datum_type() == step.datum_type());
        ensure!(start.shape.volume().is_one());
        ensure!(end.shape.volume().is_one());
        ensure!(step.shape.volume().is_one());
        if let (Some(start), Some(end), Some(step)) = (&start.konst, &end.konst, &step.konst) {
            let len = if start.datum_type() == TDim::datum_type() {
                let start = start.to_scalar::<TDim>()?;
                let end = end.to_scalar::<TDim>()?;
                let step = step.cast_to_scalar::<i64>()?;
                if step < 0 {
                    (start.clone() - end).divceil(-step as usize)
                } else {
                    (end.clone() - start).divceil(step as usize)
                }
            } else {
                dispatch_numbers!(Self::len_for_numbers(start.datum_type())(
                    self, start, end, step
                ))?
                .to_dim()
            };
            Ok(tvec!(start.datum_type().fact([len])))
        } else {
            Ok(tvec!(start.datum_type.fact(&[self.len.clone()])))
        }
    }

    as_op!();
}