tract_core/ops/
logic.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#![allow(clippy::bool_comparison)]
#![allow(clippy::unnecessary_cast)]

mod comparison;
mod ite;
pub use ite::IfThenElse;
pub use comparison::Comp;

use ndarray::*;

use crate::broadcast::multi_broadcast;
use crate::internal::*;

bin_to_super_type!(and, And,
                   [bool, u8, u16, u32, u64, i8, i16, i32, i64] => |c, &a, &b| *c = (a as i64 != 0 && b as i64 != 0) as _);
bin_to_super_type!(or, Or,
                   [bool, u8, u16, u32, u64, i8, i16, i32, i64] => |c, &a, &b| *c = (a as i64 != 0 || b as i64 != 0) as _);
bin_to_super_type!(xor, Xor, /*flip: commute, */ [bool] => |c, &a, &b| *c = a ^ b);

element_wise!(not, Not, [bool] => |_, vs| {
    vs.iter_mut().for_each(|a| *a = !*a);
    Ok(())
});

#[derive(Debug, Clone, new, Default, Hash)]
pub struct Iff;

impl Iff {
    pub unsafe fn eval_t<T: Datum>(
        cond: &ArrayViewD<bool>,
        out: &mut Tensor,
        t: &Tensor,
        f: &Tensor,
    ) {
        Zip::from(out.to_array_view_mut_unchecked::<T>())
            .and_broadcast(cond)
            .and_broadcast(t.to_array_view_unchecked::<T>())
            .and_broadcast(f.to_array_view_unchecked::<T>())
            .for_each(|r, c, t, f| *r = if *c { t.clone() } else { f.clone() })
    }
}

impl Op for Iff {
    fn name(&self) -> Cow<str> {
        "Iff".into()
    }
    op_as_typed_op!();
}

impl EvalOp for Iff {
    fn is_stateless(&self) -> bool {
        true
    }

    fn eval(&self, inputs: TVec<TValue>) -> TractResult<TVec<TValue>> {
        let (cond, t, f) = args_3!(inputs);
        anyhow::ensure!(t.datum_type() == f.datum_type());
        let shape: TVec<usize> = multi_broadcast(&[cond.shape(), t.shape(), f.shape()])?;
        unsafe {
            let mut result = Tensor::uninitialized_dt(t.datum_type(), &shape)?;
            let cond = cond.to_array_view::<bool>()?;
            dispatch_datum_by_size!(Self::eval_t(t.datum_type())(&cond, &mut result, &t, &f));
            Ok(tvec!(result.into_tvalue()))
        }
    }
}

impl TypedOp for Iff {
    as_op!();

    fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
        anyhow::ensure!(inputs.len() == 3, "Iff expects 3 intputs.");
        if inputs[1].datum_type != inputs[2].datum_type {
            bail!("Then and else tensors type mismatch ({:?} and {:?}).", inputs[1], inputs[2]);
        }
        if inputs[0].rank() != inputs[1].rank() || inputs[0].rank() != inputs[2].rank() {
            bail!("Inconsistent ranks, {:?}", inputs);
        }
        let shape = multi_broadcast(&[
            inputs[0].shape.to_tvec(),
            inputs[1].shape.to_tvec(),
            inputs[2].shape.to_tvec(),
        ])
        .unwrap();
        Ok(tvec!(inputs[1].datum_type.fact(shape)))
    }

    fn axes_mapping(
        &self,
        inputs: &[&TypedFact],
        outputs: &[&TypedFact],
    ) -> TractResult<AxesMapping> {
        AxesMapping::natural(inputs, outputs)
    }
}

bin_to_super_type!(bitand, BitAnd,
                   [bool, u8, u16, u32, u64, i8, i16, i32, i64] => |c, &a, &b| *c = a & b);
bin_to_super_type!(bitor, BitOr,
                   [bool, u8, u16, u32, u64, i8, i16, i32, i64] => |c, &a, &b| *c = a | b);
bin_to_super_type!(bitxor, BitXor,
                   [bool, u8, u16, u32, u64, i8, i16, i32, i64] => |c, &a, &b| *c = a ^ b);

element_wise!(bitnot, BitNot, [bool, u8, u16, u32, u64, i8, i16, i32, i64] => |_, xs| {
    xs.iter_mut().for_each(|x| *x = !*x);
    Ok(())
});