tract_core/ops/matmul/
pack.rs

1use crate::axes::Axis;
2use crate::internal::*;
3use ndarray::*;
4use tract_linalg::block_quant::{BlockQuantValue, PackedBlockQuantFact, PackedBlockQuantFormat};
5use tract_linalg::mmm::MMMInputValue;
6use tract_linalg::pack::PackedFormat;
7
8use super::ModePicker;
9
10#[derive(Debug, Clone, PartialEq, Eq, Hash)]
11pub struct OptMatMulPack {
12    pub(crate) packers: Vec<PackedFormat>,
13    pub(crate) mode_picker: ModePicker,
14    pub(crate) k_axis: usize,
15    pub(crate) mn_axis: usize,
16}
17
18impl Op for OptMatMulPack {
19    fn name(&self) -> Cow<str> {
20        "OptMatMulPack".into()
21    }
22
23    fn info(&self) -> TractResult<Vec<String>> {
24        Ok(vec![format!("{:?}. k axis: {}, mn axis: {}", self.packers, self.k_axis, self.mn_axis)])
25    }
26
27    op_as_typed_op!();
28    impl_op_same_as!();
29}
30
31impl EvalOp for OptMatMulPack {
32    fn is_stateless(&self) -> bool {
33        true
34    }
35
36    fn eval_with_session(
37        &self,
38        session: &SessionState,
39        mut inputs: TVec<TValue>,
40    ) -> TractResult<TVec<TValue>> {
41        self.do_eval(session, inputs.remove(0))
42    }
43}
44
45impl TypedOp for OptMatMulPack {
46    fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
47        let k = inputs[0].shape[self.k_axis].clone();
48        let mn = inputs[0].shape[self.mn_axis].clone();
49        let opaque_fact = DynPackedOpaqueFact { k, mn, packers: self.packers.clone() };
50        Ok(tvec!(Opaque::datum_type()
51            .fact(self.output_shape(&inputs[0].shape))
52            .with_opaque_fact(opaque_fact)))
53    }
54
55    fn axes_mapping(
56        &self,
57        inputs: &[&TypedFact],
58        outputs: &[&TypedFact],
59    ) -> TractResult<AxesMapping> {
60        let mut axes: Vec<Axis> = (0..inputs[0].rank())
61            .filter(|&ix| ix != self.k_axis && ix != self.mn_axis)
62            .enumerate()
63            .zip('a'..)
64            .map(|((o, i), repr)| Axis::new(repr, 1, 1).input(0, i).output(0, o))
65            .collect();
66        axes.push(Axis::new('K', 1, 1).input(0, self.k_axis));
67        axes.push(Axis::new('M', 1, 1).input(0, self.mn_axis));
68        axes.push(Axis::new('P', 1, 1).output(0, outputs[0].rank()));
69        AxesMapping::new(1, 1, axes)
70    }
71
72    as_op!();
73}
74
75impl OptMatMulPack {
76    fn do_eval(&self, _session: &SessionState, input: TValue) -> TractResult<TVec<TValue>> {
77        unsafe {
78            let mode = self.mode_picker.pick(input.shape()[self.mn_axis])?;
79            let packer = &self.packers[mode];
80            let output_shape: TVec<usize> = self.output_shape(input.shape());
81            let stores = if output_shape.iter().all(|d| *d == 1) {
82                tensor0::<Opaque>(
83                    packer.pack_tensor_view(&input.view(), self.k_axis, self.mn_axis)?.into(),
84                )
85                .into_shape(&output_shape)?
86            } else {
87                let mut stores = Tensor::uninitialized_dt(Opaque::datum_type(), &output_shape)?;
88                let mut stores_view = stores.to_array_view_mut::<Opaque>()?;
89                let mut bc_shape: TVec<usize> = input.shape().into();
90                bc_shape[self.k_axis] = 1;
91                bc_shape[self.mn_axis] = 1;
92
93                for coord in indices(&*bc_shape) {
94                    let offset = coord
95                        .as_array_view()
96                        .iter()
97                        .zip(input.strides())
98                        .map(|(x, s)| *x as isize * s)
99                        .sum::<isize>()
100                        * input.datum_type().size_of() as isize;
101                    let mut pack_coords: TVec<usize> = coord.slice().into();
102                    pack_coords.remove(self.k_axis.max(self.mn_axis));
103                    pack_coords.remove(self.k_axis.min(self.mn_axis));
104                    stores_view[&*pack_coords] = packer
105                        .pack_tensor_view(
106                            &TensorView::from_bytes(&input, offset, input.shape(), input.strides()),
107                            self.k_axis,
108                            self.mn_axis,
109                        )?
110                        .into();
111                }
112                stores
113            };
114            Ok(tvec!(stores.into_tvalue()))
115        }
116    }
117
118    pub fn output_shape<D: DimLike>(&self, input: &[D]) -> TVec<D> {
119        let mut packed_shape: TVec<D> = input.into();
120        packed_shape.remove(self.mn_axis.max(self.k_axis));
121        packed_shape.remove(self.mn_axis.min(self.k_axis));
122        packed_shape
123    }
124}
125
126#[derive(Hash, Clone, Debug, PartialEq, Eq)]
127pub struct DynPackedOpaqueFact {
128    pub k: TDim,
129    pub mn: TDim,
130    pub packers: Vec<PackedFormat>,
131}
132
133impl OpaqueFact for DynPackedOpaqueFact {
134    fn mem_size(&self) -> TDim {
135        self.k.clone() * &self.mn * self.packers[0].dt.size_of()
136    }
137
138    fn same_as(&self, other: &dyn OpaqueFact) -> bool {
139        other.downcast_ref::<Self>().is_some_and(|o| o == self)
140    }
141}
142
143#[derive(Debug, Clone, Hash, Eq, PartialEq)]
144pub struct OptSimpleMatMulPack {
145    pub(crate) packed_format: PackedBlockQuantFormat,
146    pub(crate) k: usize,
147    pub(crate) m: usize,
148}
149
150impl Op for OptSimpleMatMulPack {
151    fn name(&self) -> Cow<str> {
152        "OptSimpleMatMulPack".into()
153    }
154    op_as_typed_op!();
155}
156
157impl EvalOp for OptSimpleMatMulPack {
158    fn is_stateless(&self) -> bool {
159        true
160    }
161
162    fn state(
163        &self,
164        _session: &mut SessionState,
165        _node_id: usize,
166    ) -> TractResult<Option<Box<dyn OpState>>> {
167        Ok(None)
168    }
169
170    fn eval(&self, inputs: TVec<TValue>) -> TractResult<TVec<TValue>> {
171        let input = args_1!(inputs);
172        let mut output = tensor1(
173            &input
174                .as_slice::<Opaque>()?
175                .iter()
176                .map(|i| {
177                    let i = i.downcast_ref::<BlockQuantValue>().unwrap();
178                    let iv: Box<dyn MMMInputValue> =
179                        Box::new(self.packed_format.pack(&i.value, i.fact.k())?);
180                    Ok(Opaque(Arc::new(iv)))
181                })
182                .collect::<TractResult<Vec<_>>>()?,
183        );
184        output.set_shape(input.shape())?;
185        Ok(tvec!(output.into_tvalue()))
186    }
187}
188
189impl TypedOp for OptSimpleMatMulPack {
190    fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
191        let fact = Opaque::fact(inputs[0].shape.clone()).with_opaque_fact(PackedBlockQuantFact {
192            format: self.packed_format.clone(),
193            shape: tvec!(self.m, self.k),
194        });
195        Ok(tvec!(fact))
196    }
197
198    as_op!();
199}