tract_core/ops/matmul/
pack.rs1use crate::axes::Axis;
2use crate::internal::*;
3use ndarray::*;
4use tract_linalg::frame::PackedFormat;
5
6use super::ModePicker;
7
8#[derive(Debug, Clone, PartialEq, Eq, Hash)]
9pub struct OptMatMulPack {
10 pub(crate) packers: Vec<PackedFormat>,
11 pub(crate) mode_picker: ModePicker,
12 pub(crate) k_axis: usize,
13 pub(crate) mn_axis: usize,
14}
15
16impl Op for OptMatMulPack {
17 fn name(&self) -> Cow<str> {
18 "OptMatMulPack".into()
19 }
20
21 fn info(&self) -> TractResult<Vec<String>> {
22 Ok(vec![format!("{:?}. k axis: {}, mn axis: {}", self.packers, self.k_axis, self.mn_axis)])
23 }
24
25 op_as_typed_op!();
26 impl_op_same_as!();
27}
28
29impl EvalOp for OptMatMulPack {
30 fn is_stateless(&self) -> bool {
31 true
32 }
33
34 fn eval_with_session(
35 &self,
36 session: &SessionState,
37 mut inputs: TVec<TValue>,
38 ) -> TractResult<TVec<TValue>> {
39 self.do_eval(session, inputs.remove(0))
40 }
41}
42
43impl TypedOp for OptMatMulPack {
44 fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
45 let k = inputs[0].shape[self.k_axis].clone();
46 let mn = inputs[0].shape[self.mn_axis].clone();
47 let opaque_fact = DynPackedOpaqueFact { k, mn, packers: self.packers.clone() };
48 Ok(tvec!(Opaque::datum_type()
49 .fact(self.output_shape(&inputs[0].shape))
50 .with_opaque_fact(opaque_fact)))
51 }
52
53 fn axes_mapping(
54 &self,
55 inputs: &[&TypedFact],
56 outputs: &[&TypedFact],
57 ) -> TractResult<AxesMapping> {
58 let mut axes: Vec<Axis> = (0..inputs[0].rank())
59 .filter(|&ix| ix != self.k_axis && ix != self.mn_axis)
60 .enumerate()
61 .zip('a'..)
62 .map(|((o, i), repr)| Axis::new(repr, 1, 1).input(0, i).output(0, o))
63 .collect();
64 axes.push(Axis::new('K', 1, 1).input(0, self.k_axis));
65 axes.push(Axis::new('M', 1, 1).input(0, self.mn_axis));
66 axes.push(Axis::new('P', 1, 1).output(0, outputs[0].rank()));
67 AxesMapping::new(1, 1, axes)
68 }
69
70 as_op!();
71}
72
73impl OptMatMulPack {
74 fn do_eval(&self, _session: &SessionState, input: TValue) -> TractResult<TVec<TValue>> {
75 unsafe {
76 let mode = self.mode_picker.pick(input.shape()[self.mn_axis])?;
77 let packer = &self.packers[mode];
78 let output_shape: TVec<usize> = self.output_shape(input.shape());
79 let stores = if output_shape.iter().all(|d| *d == 1) {
80 tensor0::<Opaque>(
81 packer.pack_tensor_view(&input.view(), self.k_axis, self.mn_axis)?.into(),
82 )
83 .into_shape(&output_shape)?
84 } else {
85 let mut stores = Tensor::uninitialized_dt(Opaque::datum_type(), &output_shape)?;
86 let mut stores_view = stores.to_array_view_mut::<Opaque>()?;
87 let mut bc_shape: TVec<usize> = input.shape().into();
88 bc_shape[self.k_axis] = 1;
89 bc_shape[self.mn_axis] = 1;
90
91 for coord in indices(&*bc_shape) {
92 let offset = coord
93 .as_array_view()
94 .iter()
95 .zip(input.strides())
96 .map(|(x, s)| *x as isize * s)
97 .sum::<isize>()
98 * input.datum_type().size_of() as isize;
99 let mut pack_coords: TVec<usize> = coord.slice().into();
100 pack_coords.remove(self.k_axis.max(self.mn_axis));
101 pack_coords.remove(self.k_axis.min(self.mn_axis));
102 stores_view[&*pack_coords] = packer
103 .pack_tensor_view(
104 &TensorView::from_bytes(&input, offset, input.shape(), input.strides()),
105 self.k_axis,
106 self.mn_axis,
107 )?
108 .into();
109 }
110 stores
111 };
112 Ok(tvec!(stores.into_tvalue()))
113 }
114 }
115
116 pub fn output_shape<D: DimLike>(&self, input: &[D]) -> TVec<D> {
117 let mut packed_shape: TVec<D> = input.into();
118 packed_shape.remove(self.mn_axis.max(self.k_axis));
119 packed_shape.remove(self.mn_axis.min(self.k_axis));
120 packed_shape
121 }
122}
123
124#[derive(Hash, Clone, Debug, PartialEq, Eq)]
125pub struct DynPackedOpaqueFact {
126 pub k: TDim,
127 pub mn: TDim,
128 pub packers: Vec<PackedFormat>,
129}
130
131impl OpaqueFact for DynPackedOpaqueFact {
132 fn mem_size(&self) -> TDim {
133 self.k.clone() * &self.mn * self.packers[0].dt.size_of()
134 }
135
136 fn same_as(&self, other: &dyn OpaqueFact) -> bool {
137 other.downcast_ref::<Self>().is_some_and(|o| o == self)
138 }
139}