1use crate::internal::Axis;
2use crate::internal::*;
3use crate::ops::binary::TypedBinOp;
4use crate::ops::cast::cast;
5use crate::ops::change_axes::wire_with_rank_broadcast;
6use crate::ops::element_wise::ElementWiseOp;
7use crate::ops::math::{div, square, Mul, Square};
8use std::convert::TryFrom;
9use std::iter::Sum;
10use std::mem::transmute;
11use tract_data::internal::ClampCast;
12use tract_data::itertools::Itertools;
13use tract_ndarray::prelude::*;
14use tract_num_traits::{AsPrimitive, Bounded};
15
16macro_rules! r {
17 ($($path:ident)::* ($dt:expr) ($($args:expr),*)) => {
18 match $dt {
19 DatumType::U8 => $($path)::*::<u8,_,_,_>($($args),*),
20 DatumType::I8 => $($path)::*::<i8,_,_,_>($($args),*),
21 DatumType::U16 => $($path)::*::<u16,_,_,_>($($args),*),
22 DatumType::I16 => $($path)::*::<i16,_,_,_>($($args),*),
23 DatumType::I32 => $($path)::*::<i32,_,_,_>($($args),*),
24 DatumType::I64 => $($path)::*::<i64,_,_,_>($($args),*),
25 DatumType::F16 => $($path)::*::<f16,_,_,_>($($args),*),
26 DatumType::F32 => $($path)::*::<f32,_,_,_>($($args),*),
27 DatumType::F64 => $($path)::*::<f64,_,_,_>($($args),*),
28 DatumType::QI8(_) => $($path)::*::<i8,_,_,_>($($args),*),
29 DatumType::QU8(_) => $($path)::*::<u8,_,_,_>($($args),*),
30 _ => bail!("{:?} is not a number", $dt)
31 }
32 };
33 ($($path:ident)::* ($dt:expr) ($($args:expr),*); $($q_path:ident)::* ($($q_args:expr),*)) => {
34 match $dt {
35 DatumType::U8 => $($path)::*::<u8,_,_,_>($($args),*),
36 DatumType::I8 => $($path)::*::<i8,_,_,_>($($args),*),
37 DatumType::U16 => $($path)::*::<u16,_,_,_>($($args),*),
38 DatumType::I16 => $($path)::*::<i16,_,_,_>($($args),*),
39 DatumType::I32 => $($path)::*::<i32,_,_,_>($($args),*),
40 DatumType::I64 => $($path)::*::<i64,_,_,_>($($args),*),
41 DatumType::F16 => $($path)::*::<f16,_,_,_>($($args),*),
42 DatumType::F32 => $($path)::*::<f32,_,_,_>($($args),*),
43 DatumType::F64 => $($path)::*::<f64,_,_,_>($($args),*),
44 DatumType::QI8(_) => $($q_path)::*::<i8,_,_,_>($($q_args),*),
45 DatumType::QU8(_) => $($q_path)::*::<u8,_,_,_>($($q_args),*),
46 _ => bail!("{:?} is not a number", $dt)
47 }
48 }
49}
50
51#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
52pub enum Reducer {
53 ArgMax(bool), ArgMin(bool),
55 Max,
56 Min,
57 Prod,
58 Sum,
59 MeanOfSquares,
60}
61
62impl Reducer {
63 pub fn reduce(&self, axes: &[usize], input: &Tensor) -> TractResult<Tensor> {
64 use Reducer::*;
65 let dt = input.datum_type();
66 let output_shape: Vec<usize> = input
67 .shape()
68 .iter()
69 .enumerate()
70 .map(|(ax, &d)| if axes.contains(&ax) { 1 } else { d })
71 .collect();
72 let (zp, scale) = input.datum_type().zp_scale();
73 unsafe {
74 let mut t = match self {
75 ArgMax(last) => {
76 r!(Self::reduce_t(dt)(self, axes, &output_shape, input, argmax_t, *last))
77 }
78 ArgMin(last) => {
79 r!(Self::reduce_t(dt)(self, axes, &output_shape, input, argmin_t, *last))
80 }
81 Min => r!(Self::reduce_t(dt)(self, axes, &output_shape, input, min_t, ())),
82 Max => r!(Self::reduce_t(dt)(self, axes, &output_shape, input, max_t, ())),
83 Prod => {
84 r!(Self::reduce_t(dt)(self, axes, &output_shape, input, prod_t, ()); Self::reduce_t(self, axes, &output_shape, input, q_prod_t, (zp, scale)))
85 }
86 Sum => {
87 if dt.is_float() {
88 dispatch_floatlike!(Self::sum(dt)(self, axes, input))
89 } else {
90 r!(Self::reduce_t(dt)(
91 self,
92 axes,
93 &output_shape,
94 input,
95 q_sum_t,
96 (zp, scale)
97 ))
98 }
99 }
100 MeanOfSquares => self.mean_of_squares(axes, input)?,
101 };
102 if input.datum_type().is_quantized()
103 && input.datum_type().unquantized() == t.datum_type().unquantized()
104 {
105 t.set_datum_type(input.datum_type());
106 }
107 Ok(t)
108 }
109 }
110
111 unsafe fn reduce_t<T, TO, F, A>(
112 &self,
113 axes: &[usize],
114 output_shape: &[usize],
115 input_tensor: &Tensor,
116 f: F,
117 args: A,
118 ) -> Tensor
119 where
120 F: for<'a> Fn(ArrayViewD<'a, T>, A) -> TO,
121 T: Copy + Datum,
122 TO: Copy + Datum,
123 A: Copy,
124 {
125 use ndarray::*;
126 let input = input_tensor.to_array_view_unchecked::<T>();
127 let result = Array::from_shape_fn(output_shape, |coords| {
128 let slice_spec: Vec<SliceInfoElem> = coords
129 .slice()
130 .iter()
131 .enumerate()
132 .map(|(ax, &d)| if axes.contains(&ax) { (..).into() } else { d.into() })
133 .collect();
134 let slice_info = SliceInfo::<_, IxDyn, IxDyn>::try_from(slice_spec).unwrap();
135 let slice = input.slice(&slice_info);
136 f(slice, args)
137 });
138 result.into_tensor()
139 }
140
141 unsafe fn sum<T>(&self, axes: &[usize], input: &Tensor) -> Tensor
146 where
147 T: Copy + Datum + num_traits::Zero + Sum,
148 f16: AsPrimitive<T>,
149 f32: AsPrimitive<T>,
150 {
151 if axes.len() == 0 {
152 return input.to_owned();
153 }
154
155 if axes.len() > 1 || axes[0] != input.rank() - 1 {
157 let mut operative_axes = vec![];
158 let mut operative_shape: Vec<usize> = vec![];
159 for (ix, dim) in input.shape().iter().enumerate() {
160 if ix > 0 && axes.contains(&ix) && axes.contains(&(ix - 1)) {
162 *operative_shape.last_mut().unwrap() *= *dim;
163 } else if axes.contains(&ix) {
164 operative_axes.push(operative_shape.len());
165 operative_shape.push(*dim);
166 } else {
167 operative_shape.push(*dim);
168 }
169 }
170 let mut output = input
171 .to_array_view_unchecked::<T>()
172 .into_shape_with_order(operative_shape)
173 .unwrap()
174 .sum_axis(Axis(*operative_axes.iter().max().unwrap()));
175
176 for axis in operative_axes.iter().rev().skip(1) {
177 output = output.sum_axis(Axis(*axis));
178 }
179
180 let mut output = output.into_tensor();
181
182 for &axis in axes {
183 output.insert_axis(axis).unwrap();
184 }
185
186 output
187 } else {
188 let mut output: Option<ArrayD<T>> = None;
189 for axis in axes.iter().copied() {
190 let input_view = output
191 .as_ref()
192 .map(|o| o.view())
193 .unwrap_or_else(|| input.to_array_view_unchecked::<T>());
194
195 let reduced_dim = input_view.shape()[axis];
197 let input_stride = input_view.strides()[axis] as usize;
198 let output_shape = input_view
199 .shape()
200 .iter()
201 .enumerate()
202 .map(|(idx, dim)| if idx != axis { *dim } else { 1 })
203 .collect_vec();
204
205 output = Some(ArrayD::from_shape_fn(output_shape.clone(), |coords| {
206 let mut view = input_view.view();
207 for ix in 0..output_shape.len() {
208 if ix != axis {
209 view.collapse_axis(Axis(ix), coords[ix]);
210 }
211 }
212
213 if let Some(slice) = view.as_slice() {
214 if T::datum_type() == f16::datum_type() {
215 let slice: &[f16] = unsafe { std::mem::transmute(slice) };
216 (tract_linalg::ops().sum_f16)()
217 .run_with_params(slice, ())
218 .unwrap()
219 .as_()
220 } else if T::datum_type() == f32::datum_type() {
221 let slice: &[f32] = unsafe { std::mem::transmute(slice) };
222 (tract_linalg::ops().sum_f32)()
223 .run_with_params(slice, ())
224 .unwrap()
225 .as_()
226 } else {
227 slice.iter().cloned().sum::<T>()
228 }
229 } else {
230 dbg!("ndarary code");
231 let first: *const T = &input_view[coords];
232 let mut sum = T::zero();
233 for i in 0..reduced_dim {
234 sum = sum + *(first.add(i * input_stride));
235 }
236 sum
237 }
238 }));
239 }
240 output.unwrap().into_tensor()
241 }
242 }
243
244 fn mean_of_squares(&self, axis: &[usize], input: &Tensor) -> TractResult<Tensor> {
245 let dt = input.datum_type();
246 let mut input = input.cast_to::<f32>()?.into_owned();
247 input.as_slice_mut::<f32>()?.iter_mut().for_each(|x| *x = *x * *x);
248 let mut output = unsafe { self.sum::<f32>(axis, &input) };
249 let norm = output.len() as f32 / input.len() as f32;
250 output.as_slice_mut::<f32>()?.iter_mut().for_each(|x| *x *= norm);
251 Ok(output.cast_to_dt(dt)?.into_owned())
252 }
253}
254
255fn argmax_t<T>(v: ArrayViewD<T>, last: bool) -> i64
256where
257 T: Copy + Datum + num_traits::Bounded + ::std::cmp::PartialOrd,
258{
259 v.iter()
260 .copied()
261 .enumerate()
262 .fold(
263 (0usize, T::min_value()),
264 |acc, v| {
265 if v.1 > acc.1 || (last && acc.1 == v.1) {
266 v
267 } else {
268 acc
269 }
270 },
271 )
272 .0 as i64
273}
274
275fn argmin_t<T>(v: ArrayViewD<T>, last: bool) -> i64
276where
277 T: Copy + Datum + num_traits::Bounded + ::std::cmp::PartialOrd,
278{
279 v.iter()
280 .copied()
281 .enumerate()
282 .fold(
283 (0usize, T::max_value()),
284 |acc, v| {
285 if v.1 < acc.1 || (last && acc.1 == v.1) {
286 v
287 } else {
288 acc
289 }
290 },
291 )
292 .0 as i64
293}
294
295fn max_t<T>(v: ArrayViewD<T>, _: ()) -> T
296where
297 T: Copy + Datum + num_traits::Bounded + ::std::cmp::PartialOrd,
298{
299 if T::datum_type() == f32::datum_type() {
300 if let Some(slice) = v.as_slice() {
301 let slice = unsafe { transmute::<&[T], &[f32]>(slice) };
302 (tract_linalg::ops().max_f32)().run(slice).unwrap();
303 }
304 }
305 v.fold(T::min_value(), |acc, &v| if acc > v { acc } else { v })
306}
307
308fn min_t<T>(v: ArrayViewD<T>, _: ()) -> T
309where
310 T: Copy + Datum + num_traits::Bounded + ::std::cmp::PartialOrd,
311{
312 v.fold(T::max_value(), |acc, &v| if acc < v { acc } else { v })
313}
314
315fn prod_t<T>(v: ArrayViewD<T>, _: ()) -> T
316where
317 T: Copy + Datum + num_traits::One,
318{
319 v.fold(T::one(), |acc, &v| acc * v)
320}
321
322fn q_prod_t<T>(v: ArrayViewD<T>, zp_scale: (i32, f32)) -> T
323where
324 T: Copy + num_traits::AsPrimitive<f32> + Bounded + Datum,
325 f32: num_traits::AsPrimitive<T>,
326{
327 let (zp, scale) = zp_scale;
328 (v.fold(1f32, |acc, &v| acc * (v.as_() - zp as f32)) * scale.powi(v.len() as i32 - 1)
329 + zp as f32)
330 .clamp_cast()
331}
332
333fn q_sum_t<T>(v: ArrayViewD<T>, zp_scale: (i32, f32)) -> T
334where
335 T: Copy + Bounded + num_traits::AsPrimitive<i32> + Datum,
336 i32: num_traits::AsPrimitive<T>,
337{
338 let (zp, _) = zp_scale;
339 (v.fold(0i32, |acc, &v| acc + v.as_()) - zp * (v.len() as i32 - 1)).clamp_cast()
340}
341
342#[derive(Clone, Debug, new, Hash)]
343pub struct Reduce {
344 pub axes: TVec<usize>,
345 pub reducer: Reducer,
346}
347
348impl Op for Reduce {
349 fn name(&self) -> Cow<str> {
350 format!("Reduce<{:?}>", self.reducer).into()
351 }
352 fn info(&self) -> TractResult<Vec<String>> {
353 Ok(vec![format!("axes: {:?}", self.axes)])
354 }
355 op_as_typed_op!();
356}
357
358impl EvalOp for Reduce {
359 fn is_stateless(&self) -> bool {
360 true
361 }
362
363 fn eval(&self, inputs: TVec<TValue>) -> TractResult<TVec<TValue>> {
364 Ok(tvec!(self.reducer.reduce(&self.axes, &inputs[0])?.into()))
365 }
366}
367
368impl TypedOp for Reduce {
369 fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
370 ensure!(self.axes.iter().tuple_windows().all(|(a, b)| a < b));
371 if inputs[0].datum_type == TDim::datum_type() {
372 bail!("Reduce input must be cast from TDim to i64 beforehand")
373 }
374 let mut shape: TVec<_> = inputs[0].shape.to_tvec();
375 for &ax in &self.axes {
376 shape[ax] = 1.to_dim();
377 }
378 let dt = if let Reducer::ArgMax(_) | Reducer::ArgMin(_) = self.reducer {
379 DatumType::I64
380 } else {
381 inputs[0].datum_type
382 };
383 Ok(tvec!(dt.fact(shape)))
384 }
385
386 fn declutter(
387 &self,
388 model: &TypedModel,
389 node: &TypedNode,
390 ) -> TractResult<Option<TypedModelPatch>> {
391 if let Some(patch) = self.declutter_mean_of_square(model, node)? {
392 return Ok(Some(patch));
393 }
394 if let Some(patch) = self.declutter_scalar_mul_then_sum(model, node)? {
395 return Ok(Some(patch));
396 }
397 if let Some(patch) = self.declutter_reduce_reduce(model, node)? {
398 return Ok(Some(patch));
399 }
400 Ok(None)
401 }
402
403 fn axes_mapping(
404 &self,
405 inputs: &[&TypedFact],
406 outputs: &[&TypedFact],
407 ) -> TractResult<AxesMapping> {
408 let mut letters = 'a'..;
409 let axes = (0..inputs[0].rank())
410 .flat_map(|ix| {
411 if self.axes.contains(&ix) {
412 tvec!(
413 Axis::new(letters.next().unwrap(), inputs.len(), outputs.len())
414 .input(0, ix),
415 Axis::new(letters.next().unwrap(), inputs.len(), outputs.len())
416 .output(0, ix),
417 )
418 } else {
419 tvec!(Axis::new(letters.next().unwrap(), inputs.len(), outputs.len())
420 .input(0, ix)
421 .output(0, ix))
422 }
423 .into_iter()
424 })
425 .collect_vec();
426 AxesMapping::new(1, 1, axes)
427 }
428
429 fn change_axes(
430 &self,
431 model: &TypedModel,
432 node: &TypedNode,
433 _io: InOut,
434 change: &AxisOp,
435 ) -> TractResult<Option<AxisChangeConsequence>> {
436 let mut axes = tvec!();
437 for reduced in &self.axes {
438 if let Some(axis) = change.transform_axis(*reduced) {
439 axes.push(axis);
440 } else {
441 return Ok(None);
442 }
443 }
444 axes.sort();
445 let op = Some(Box::new(Self { axes, ..self.clone() }) as _);
446 Ok(Some(AxisChangeConsequence::new(model, node, op, change)))
447 }
448
449 as_op!();
450}
451
452impl Reduce {
453 fn declutter_reduce_reduce(
454 &self,
455 model: &TypedModel,
456 node: &TypedNode,
457 ) -> TractResult<Option<TypedModelPatch>> {
458 let Some(prec) = model.single_prec(node.id)? else {
459 return Ok(None);
460 };
461 let Some(prec_reduce) = prec.op_as::<Self>() else {
462 return Ok(None);
463 };
464 use Reducer::*;
465 if prec_reduce.reducer != self.reducer || ![Sum, Prod, Min, Max].contains(&self.reducer) {
466 return Ok(None);
467 }
468 let mut patch = TypedModelPatch::default();
469 let wire = patch.tap_model(model, prec.inputs[0])?;
470 let wire = patch.wire_node(
471 &node.name,
472 Self {
473 reducer: self.reducer,
474 axes: prec_reduce
475 .axes
476 .iter()
477 .chain(self.axes.iter())
478 .copied()
479 .sorted()
480 .dedup()
481 .collect(),
482 },
483 &[wire],
484 )?;
485 patch.shunt_outside(model, node.id.into(), wire[0])?;
486 Ok(Some(patch))
487 }
488
489 fn declutter_scalar_mul_then_sum(
490 &self,
491 model: &TypedModel,
492 node: &TypedNode,
493 ) -> TractResult<Option<TypedModelPatch>> {
494 if self.reducer == Reducer::Sum {
495 let Some(prec) = model.single_prec(node.id)? else {
496 return Ok(None);
497 };
498 let Some(prec_bin) = prec.op_as::<TypedBinOp>() else {
499 return Ok(None);
500 };
501 if !prec_bin.0.is::<Mul>() {
502 return Ok(None);
503 }
504 let mul_input_fact = model.node_input_facts(prec.id)?;
505 let Some(scalar_slot) = mul_input_fact
506 .iter()
507 .position(|f| f.konst.as_ref().is_some_and(|k| k.volume() == 1))
508 else {
509 return Ok(None);
510 };
511 let mut patch = TypedModelPatch::default();
512 let scalar = patch.tap_model(model, prec.inputs[scalar_slot])?;
513 let wire = patch.tap_model(model, prec.inputs[1 - scalar_slot])?;
514 let wire = patch.wire_node(&node.name, self.clone(), &[wire])?[0];
515 let wire = patch.wire_node(&prec.name, prec_bin.clone(), &[wire, scalar])?[0];
516 patch.shunt_outside(model, node.id.into(), wire)?;
517 return Ok(Some(patch));
518 }
519 Ok(None)
520 }
521
522 fn declutter_mean_of_square(
523 &self,
524 model: &TypedModel,
525 node: &TypedNode,
526 ) -> TractResult<Option<TypedModelPatch>> {
527 if self.reducer == Reducer::Sum {
528 let Some(prec) = model.single_prec(node.id)? else {
529 return Ok(None);
530 };
531 let Some(prec_ew) = prec.op_as::<ElementWiseOp>() else {
532 return Ok(None);
533 };
534 if !prec_ew.0.is::<Square>() {
535 return Ok(None);
536 }
537 if node.outputs.len() != 1 || node.outputs[0].successors.len() != 1 {
538 return Ok(None);
539 }
540 let our_inlet = node.outputs[0].successors[0];
541 let succ = model.node(our_inlet.node);
542 let Some(succ_bin) = succ.op_as::<TypedBinOp>() else {
543 return Ok(None);
544 };
545 if !succ_bin.0.is::<Mul>() {
546 return Ok(None);
547 }
548 let other = succ.inputs[1 - our_inlet.slot];
549 let Some(other_konst) = model.outlet_fact(other)?.uniform.as_ref() else {
550 return Ok(None);
551 };
552 let norm: TDim = self.axes.iter().map(|&ax| &prec.outputs[0].fact.shape[ax]).product();
553 let Some(norm) = norm.as_i64() else {
554 return Ok(None);
555 };
556 if norm == 0 {
557 return Ok(None);
558 }
559 let norm = tensor0((norm as f32).recip());
560 if other_konst.close_enough(&norm, Approximation::Close).is_ok() {
561 let mut patch = TypedModelPatch::default();
562 let wire = patch.tap_model(model, prec.inputs[0])?;
563 let wire = patch.wire_node(
564 &node.name,
565 Reduce::new(self.axes.clone(), Reducer::MeanOfSquares),
566 &[wire],
567 )?[0];
568 patch.shunt_outside(model, succ.id.into(), wire)?;
569 return Ok(Some(patch));
570 }
571 }
572 Ok(None)
573 }
574}
575
576pub fn expand_mean_of_squares(
577 _ctx: &(),
578 model: &TypedModel,
579 node: &TypedNode,
580 name: &str,
581 op: &Reduce,
582) -> TractResult<Option<TypedModelPatch>> {
583 if op.reducer == Reducer::MeanOfSquares {
584 let mut patch = TypedModelPatch::default();
585 let mut wire = tvec!(patch.tap_model(model, node.inputs[0])?);
586 let input_fact = model.outlet_fact(node.inputs[0])?;
587 let dt = input_fact.datum_type;
588 if dt != f32::datum_type() {
589 wire = patch.wire_node(format!("{name}.to_f32"), cast(f32::datum_type()), &wire)?;
590 }
591 wire = patch.wire_node(format!("{name}.sqr"), square(), &wire)?;
592 wire = patch.wire_node(
593 format!("{name}.sum"),
594 Reduce::new(op.axes.clone(), Reducer::Sum),
595 &wire,
596 )?;
597 let card = input_fact
598 .shape
599 .iter()
600 .enumerate()
601 .filter(|(ix, _dim)| op.axes.contains(ix))
602 .map(|(_ix, dim)| dim)
603 .product::<TDim>();
604 let card = patch.add_const(format!("{name}.card"), tensor0(card))?;
605 let card =
606 patch.wire_node(format!("{name}.card_to_f32"), cast(f32::datum_type()), &[card])?;
607
608 wire = wire_with_rank_broadcast(
609 format!("{name}.norm"),
610 &mut patch,
611 div(),
612 &[wire[0], card[0]],
613 )?;
614 if dt != f32::datum_type() {
615 wire = patch.wire_node(format!("{name}.from_f32"), cast(dt), &wire)?;
616 }
617 patch.shunt_outside(model, node.id.into(), wire[0])?;
618 Ok(Some(patch))
619 } else {
620 Ok(None)
621 }
622}