tract_core/ops/array/
gather_nd.rs

1use crate::internal::*;
2use tract_ndarray::prelude::*;
3
4#[derive(Debug, Clone, new, Hash)]
5pub struct GatherNd {
6    pub batch_dims: usize,
7}
8
9
10
11impl GatherNd {
12    fn compute_shape<D: DimLike>(
13        &self,
14        data_shape: &[D],
15        indices_shape: &[D],
16    ) -> TractResult<TVec<D>> {
17        let mut shape: TVec<D> = indices_shape.into();
18        let n = shape.pop().unwrap().to_usize()?;
19        shape.extend(data_shape[n + self.batch_dims..].iter().cloned());
20        Ok(shape)
21    }
22
23    unsafe fn eval_t<T: Datum>(
24        &self,
25        output: &mut Tensor,
26        data: &Tensor,
27        indices: &ArrayViewD<i32>,
28    ) {
29        let batch_dims = self.batch_dims;
30        assert_eq!(output.shape()[..batch_dims], data.shape()[..batch_dims]);
31        assert_eq!(output.shape()[..batch_dims], indices.shape()[..batch_dims]);
32        let batch_size = data.shape().iter().take(batch_dims).product();
33        let n = indices.shape()[indices.ndim() - 1];
34
35        let remaining = indices.shape().iter().skip(batch_dims).rev().skip(1).product();
36        let indices_shape_op = tvec!(batch_size, remaining, n);
37        let reshaped_indices: ArrayViewD<i32> =
38            indices.view().into_shape_with_order(&*indices_shape_op).unwrap();
39
40        let mut data_shape_op: TVec<usize> =
41            data.shape().iter().skip(batch_dims).copied().collect();
42        data_shape_op.insert(0, batch_size);
43        let reshaped_data =
44            data.to_array_view_unchecked::<T>().into_shape_with_order(&*data_shape_op).unwrap();
45
46        let mut output_shape_op: TVec<usize> =
47            data.shape().iter().skip(n + batch_dims).copied().collect();
48        output_shape_op.insert(0, batch_size * remaining);
49        let mut output =
50            output.to_array_view_mut_unchecked::<T>().into_shape_with_order(&*output_shape_op).unwrap();
51
52        for b in 0..batch_size {
53            let mut i = reshaped_data.view();
54            i.index_axis_inplace(Axis(0), b);
55            let mut coords = reshaped_indices.view();
56            coords.index_axis_inplace(Axis(0), b);
57
58            for ix in 0..remaining {
59                let mut coords = coords.view();
60                coords.index_axis_inplace(Axis(0), ix);
61
62                let mut i = i.view();
63                for x in coords {
64                    i.index_axis_inplace(Axis(0), *x as usize);
65                }
66
67                let mut o = output.view_mut();
68                o.index_axis_inplace(Axis(0), b * remaining + ix);
69                o.assign(&i);
70            }
71        }
72    }
73}
74
75impl Op for GatherNd {
76    fn name(&self) -> Cow<str> {
77        "GatherNd".into()
78    }
79
80    op_as_typed_op!();
81}
82
83impl EvalOp for GatherNd {
84    fn is_stateless(&self) -> bool {
85        true
86    }
87
88    fn eval(&self, inputs: TVec<TValue>) -> TractResult<TVec<TValue>> {
89        let (data, indices) = args_2!(inputs);
90        let shape = self.compute_shape(data.shape(), indices.shape())?;
91        let indices = indices.cast_to::<i32>()?;
92        let indices = indices.to_array_view::<i32>()?;
93        unsafe {
94            let mut output = Tensor::uninitialized_dt(data.datum_type(), &shape)?;
95            dispatch_datum_by_size!(Self::eval_t(data.datum_type())(
96                self,
97                &mut output,
98                &data,
99                &indices
100            ));
101            Ok(tvec!(output.into_tvalue()))
102        }
103    }
104}
105
106impl TypedOp for GatherNd {
107    as_op!();
108
109    fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
110        let shape = self.compute_shape(&inputs[0].shape.to_tvec(), &inputs[1].shape.to_tvec())?;
111        Ok(tvec!(inputs[0].datum_type.fact(&shape)))
112    }
113
114    fn declutter(
115        &self,
116        model: &TypedModel,
117        node: &TypedNode,
118    ) -> TractResult<Option<TypedModelPatch>> {
119        if let Some(indices) = &model.outlet_fact(node.inputs[1])?.konst {
120            if indices.rank() == 2 && indices.shape()[0] == 1 {
121                let mut patch = TypedModelPatch::default();
122                let mut wire = patch.tap_model(model, node.inputs[0])?;
123                for (axis, &i) in indices.cast_to::<i32>()?.as_slice::<i32>()?.iter().enumerate() {
124                    wire = patch.wire_node(
125                        format!("{}-slice-axis-{}", node.name, axis),
126                        crate::ops::array::Slice::new(axis, i as usize, (i + 1) as usize),
127                        &[wire],
128                    )?[0];
129                }
130                for i in (0..indices.shape()[1]).rev() {
131                    wire = patch.wire_node(
132                        format!("{}-remove_axis_{}", node.name, i),
133                        crate::ops::change_axes::AxisOp::Rm(i),
134                        &[wire],
135                    )?[0];
136                }
137                wire = patch.wire_node(
138                    format!("{}-add_axis", node.name),
139                    crate::ops::change_axes::AxisOp::Add(0),
140                    &[wire],
141                )?[0];
142                patch.shunt_outside(model, node.id.into(), wire)?;
143                return Ok(Some(patch));
144            }
145        }
146        Ok(None)
147    }
148}