1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
use super::*;
use crate::ops::cast::cast;
use crate::ops::math::add;
use crate::ops::matmul::lir_unary::{
    AddMatMulGeometry, LirMatMulUnary, MapOutputAxisToInput, ProtoFusedSpec,
};
use crate::ops::matmul::mir_quant::{
    combine_scales, compensate_zero_points, requant, wire_offset_u8_as_i8,
};
use crate::ops::matmul::pack::MatMatMulPack;
use crate::ops::nn::{Reduce, Reducer};

pub(crate) fn codegen(
    op: &EinSum,
    model: &TypedModel,
    node: &TypedNode,
) -> TractResult<Option<TypedModelPatch>> {
    if (op.q_params.is_none() && node.inputs.len() != 2)
        || (op.q_params.is_some() && node.inputs.len() != 9)
    {
        return Ok(None);
    }
    let (m_axis, k_axis, n_axis) = choose_mkn_axes(op, model, node).context("Choosing axes")?;
    let Some(k_axis) = k_axis else {
        return Ok(None)
    };
    let Some(m_axis) = m_axis else {
        return Ok(Some(inject_m_or_n_axis(op, model, node, false)?));
    };
    let Some(n_axis) = n_axis else {
        return Ok(Some(inject_m_or_n_axis(op, model, node, true)?));
    };
    if op.q_params.is_none() {
        lir_mat_mul_unary(op, model, node, (m_axis, k_axis, n_axis))
            .context("Translating to LirMatMul")
    } else {
        dequant_output(op, model, node, (m_axis, k_axis, n_axis)).context("Dequantizing output")
    }
}

fn choose_mkn_axes<'a>(
    op: &'a EinSum,
    model: &TypedModel,
    node: &TypedNode,
) -> TractResult<(Option<&'a Axis>, Option<&'a Axis>, Option<&'a Axis>)> {
    let input_facts = model.node_input_facts(node.id)?;
    let input_shapes: TVec<&[TDim]> = input_facts.iter().map(|f| &*f.shape).collect();
    let output_shape = super::eval::output_shape(&op.axes, &input_shapes);
    let k_axes: TVec<&Axis> = op
        .axes
        .iter_all_axes()
        .filter(|a| a.inputs[0].len() == 1 && a.inputs[1].len() == 1 && a.outputs[0].len() == 0)
        .filter(|a| {
            input_facts[0].shape[a.inputs[0][0]] == input_facts[1].shape[a.inputs[1][0]]
                && input_facts[0].shape[a.inputs[0][0]] != 1.to_dim()
        })
        .collect();
    let k_axis = if k_axes.len() == 1 { Some(k_axes[0]) } else { None };
    let m_axis = op
        .axes
        .iter_all_axes()
        .filter(|a| {
            a.inputs[0].len() == 1
                && (a.inputs[1].len() == 0 || input_facts[1].shape[a.inputs[1][0]].is_one())
                && a.outputs[0].len() == 1
        })
        .max_by_key(|a| &output_shape[a.outputs[0][0]]);
    let n_axis = op
        .axes
        .iter_all_axes()
        .filter(|a| {
            (a.inputs[0].len() == 0 || input_facts[0].shape[a.inputs[0][0]].is_one())
                && a.inputs[1].len() == 1
                && a.outputs[0].len() == 1
        })
        .max_by_key(|a| &output_shape[a.outputs[0][0]]);
    Ok((m_axis, k_axis, n_axis))
}

fn inject_m_or_n_axis(
    op: &EinSum,
    model: &TypedModel,
    node: &TypedNode,
    is_n: bool,
) -> TractResult<TypedModelPatch> {
    let input_to_fix = is_n as usize;
    let input_facts = model.node_input_facts(node.id)?;
    let quasi_m_or_n_axis = op.axes.iter_all_axes().find(|a| {
        (a.inputs[1 - input_to_fix].len() == 0
            || input_facts[1 - input_to_fix].shape[a.inputs[1 - input_to_fix][0]].is_one())
            && (a.inputs[input_to_fix].len() == 1 || a.outputs[0].len() == 1)
    });
    let name = &node.name;
    let mut patch = TypedModelPatch::new("Injecting m or n axis");
    let mut wire =
        node.inputs.iter().map(|i| patch.tap_model(model, *i)).collect::<TractResult<TVec<_>>>()?;
    if let Some(axis) = quasi_m_or_n_axis {
        if axis.inputs[input_to_fix].len() == 1 {
            let new_axes = op.axes.with_extra_output_axis('$', 0, 0)?.linking(axis.repr, '$')?;
            wire = patch.wire_node(
                format!("{name}.einsum"),
                EinSum { axes: new_axes, ..op.clone() },
                &wire,
            )?;
            wire = patch.wire_node(&node.name, AxisOp::Rm(0), &wire)?;
        } else {
            let new_axes =
                op.axes.with_extra_input_axis('$', input_to_fix, 0)?.linking(axis.repr, '$')?;
            wire[input_to_fix] =
                patch.wire_node(format!("{name}.add_mn"), AxisOp::Add(0), &[wire[input_to_fix]])?
                    [0];
            wire = patch.wire_node(&node.name, EinSum { axes: new_axes, ..op.clone() }, &wire)?;
        }
    } else {
        let repr = op.axes.available_label();
        let new_axes = op
            .axes
            .with_extra_input_axis(repr, input_to_fix, 0)?
            .with_extra_output_axis('$', 0, 0)?
            .linking(repr, '$')?;
        wire[input_to_fix] =
            patch.wire_node(format!("{name}.add_m"), AxisOp::Add(0), &[wire[input_to_fix]])?[0];
        wire = patch.wire_node(
            format!("{name}.einsum"),
            EinSum { axes: new_axes, ..op.clone() },
            &wire,
        )?;
        wire = patch.wire_node(&node.name, AxisOp::Rm(0), &wire)?;
    }
    patch.shunt_outside(model, node.id.into(), wire[0])?;
    Ok(patch)
}

fn wire_axes_fix(
    patch: &mut TypedModelPatch,
    name: &str,
    var: &str,
    mapping: &AxesMapping,
    mut outlet: TVec<OutletId>,
) -> TractResult<TVec<OutletId>> {
    for (ix, axis_op) in mapping.translate_to_axis_ops()?.into_iter().enumerate() {
        outlet = patch.wire_node(format!("{name}.fix_{var}.{ix})"), axis_op, &outlet)?;
    }
    Ok(outlet)
}

fn dequant_output(
    op: &EinSum,
    model: &TypedModel,
    node: &TypedNode,
    (_, k_axis, _): (&Axis, &Axis, &Axis),
) -> TractResult<Option<TypedModelPatch>> {
    let name = &node.name;
    let mut patch = TypedModelPatch::new("Dequantizing einsum");
    let taps: Vec<OutletId> =
        node.inputs.iter().map(|i| patch.tap_model(model, *i)).collect::<TractResult<Vec<_>>>()?;
    let [a, b, bias, mut a0, a_scale, mut b0, b_scale, c0, c_scale] = *taps else {
        bail!("Expect exactly 9 inputs")
    };

    let a = wire_offset_u8_as_i8(&mut patch, &node.name, a, "a", &mut a0, "a0")?;
    let b = wire_offset_u8_as_i8(&mut patch, &node.name, b, "b", &mut b0, "b0")?;

    let mut output = patch.wire_node(
        &node.name,
        EinSum {
            q_params: None,
            axes: op.axes.extract_sub_mapping(&[0, 1], &[0])?,
            operating_dt: op.operating_dt,
        },
        &[a, b],
    )?;

    let a_i32 = patch.wire_node(format!("{name}.a_as_i32"), cast(i32::datum_type()), &[a])?[0];
    let b_i32 = patch.wire_node(format!("{name}.b_as_i32"), cast(i32::datum_type()), &[b])?[0];
    let sum_a = patch.wire_node(
        format!("{name}.sum_a"),
        Reduce::new(tvec!(k_axis.inputs[0][0]), Reducer::Sum),
        &[a_i32],
    )?;
    let sum_b = patch.wire_node(
        format!("{name}.sum_b"),
        Reduce::new(tvec!(k_axis.inputs[1][0]), Reducer::Sum),
        &[b_i32],
    )?;

    let sum_a =
        wire_axes_fix(&mut patch, name, "sum_a", &op.axes.extract_sub_mapping(&[0], &[0])?, sum_a)?;
    let sum_b =
        wire_axes_fix(&mut patch, name, "sum_b", &op.axes.extract_sub_mapping(&[1], &[0])?, sum_b)?;
    let bias = tvec!(bias);
    let bias =
        wire_axes_fix(&mut patch, name, "bias", &op.axes.extract_sub_mapping(&[2], &[0])?, bias)?;

    let abc_scale = combine_scales(&mut patch, name, a_scale, b_scale, c_scale)?;

    output = patch.wire_node(format!("{name}.add_bias"), add(), &[output[0], bias[0]])?;

    let k = model.outlet_fact(node.inputs[0])?.shape[k_axis.inputs[0][0]].clone();
    let output = compensate_zero_points(&mut patch, name, output[0], k, a0, b0, sum_a[0], sum_b[0])
        .context("Zero point compensation")?;
    let output = requant(&mut patch, name, output, op.q_params.unwrap(), abc_scale, c0)?;
    patch.shunt_outside(model, node.id.into(), output)?;
    Ok(Some(patch))
}

fn lir_mat_mul_unary(
    op: &EinSum,
    model: &TypedModel,
    node: &TypedNode,
    (m_axis, k_axis, n_axis): (&Axis, &Axis, &Axis),
) -> TractResult<Option<TypedModelPatch>> {
    let input_facts = model.node_input_facts(node.id)?;
    let a_m = m_axis.inputs[0][0];
    let a_k = k_axis.inputs[0][0];
    let b_n = n_axis.inputs[1][0];
    let b_k = k_axis.inputs[1][0];
    let c_m = m_axis.outputs[0][0];
    let c_n = n_axis.outputs[0][0];
    let m = &input_facts[0].shape[a_m];
    let k = &input_facts[0].shape[a_k];
    let n = &input_facts[1].shape[b_n];
    if m < n {
        let expr = op
            .axes
            .iter_all_axes()
            .map(|axis| {
                let mut axis = axis.clone();
                axis.inputs.swap(0, 1);
                axis
            })
            .collect::<TVec<Axis>>();
        return TypedModelPatch::replace_single_op(
            model,
            node,
            &[node.inputs[1], node.inputs[0]],
            EinSum { axes: AxesMapping::new(expr)?, ..op.clone() },
        )
        .map(Some);
    }
    let a_dt = input_facts[0].datum_type;
    let b_dt = input_facts[1].datum_type;
    let dt = op.operating_dt;
    let mmm = tract_linalg::ops()
        .mmm(a_dt, b_dt, dt, m.to_usize().ok(), k.to_usize().ok(), n.to_usize().ok())
        .unwrap();
    let name = &node.name;
    let mut patch = TypedModelPatch::new("Einsum to LirMatMulUnary");
    let a = patch.tap_model(model, node.inputs[0])?;
    let b = patch.tap_model(model, node.inputs[1])?;
    let pack_a = MatMatMulPack { packer: mmm.a_pack(), k_axis: a_k, mn_axis: a_m };
    let pack_b = MatMatMulPack { packer: mmm.b_pack(), k_axis: b_k, mn_axis: b_n };
    let pa = patch.wire_node(format!("{name}.pack_a"), pack_a, &[a])?[0];
    let pb = patch.wire_node(format!("{name}.pack_b"), pack_b, &[b])?[0];

    let mut c_to_a_axis_mapping = tvec!();
    let mut c_to_b_axis_mapping = tvec!();
    for axis in op.axes.iter_all_axes().filter(|&axis| ![m_axis, k_axis, n_axis].contains(&axis)) {
        if let (&[c], &[a]) = (&*axis.outputs[0], &*axis.inputs[0]) {
            if input_facts[0].shape[a] != 1.to_dim() {
                let a = a - (a > a_m) as usize - (a > a_k) as usize;
                c_to_a_axis_mapping.push((c, a));
            }
        }
        if let (&[c], &[b]) = (&*axis.outputs[0], &*axis.inputs[1]) {
            if input_facts[1].shape[b] != 1.to_dim() {
                let b = b - (b > b_n) as usize - (b > b_k) as usize;
                c_to_b_axis_mapping.push((c, b));
            }
        }
    }

    let c_fact = op.output_facts(&input_facts)?.remove(0);
    let name = &node.name;
    let geo = AddMatMulGeometry {
        k: k.to_dim(),
        a_storage: None,
        b_storage: None,
        mmm: mmm.clone(),
        c_to_a_axis_mapping: MapOutputAxisToInput(c_to_a_axis_mapping),
        c_to_b_axis_mapping: MapOutputAxisToInput(c_to_b_axis_mapping),
    };
    let output = unsafe { mmm.c_view(c_m, c_n) };
    let lir = LirMatMulUnary::new(
        mmm,
        c_fact,
        c_m,
        c_n,
        vec![
            ProtoFusedSpec::AddMatMul(geo, 0, 1),
            ProtoFusedSpec::Store(output),
        ],
    )
    .context("Creating LirMatMulUnary")?;
    let output = patch.wire_node(name, lir, &[pa, pb])?[0];
    patch.shunt_outside(model, node.id.into(), output)?;
    Ok(Some(patch))
}