use tract_num_traits::AsPrimitive;
use crate::internal::*;
#[derive(Debug, Default, Clone, new, Hash)]
pub struct Range {
len: TDim,
}
impl Op for Range {
fn name(&self) -> Cow<str> {
"Range".into()
}
op_as_typed_op!();
}
impl EvalOp for Range {
fn is_stateless(&self) -> bool {
true
}
fn eval(&self, inputs: TVec<TValue>) -> TractResult<TVec<TValue>> {
let (start, end, step) = args_3!(inputs);
let tensor = self.make(&start, &end, &step, None)?;
Ok(tvec!(tensor.into_tvalue()))
}
fn state(
&self,
_session: &mut SessionState,
_node_id: usize,
) -> TractResult<Option<Box<dyn OpState>>> {
if self.is_stateless() {
Ok(None)
} else {
Ok(Some(Box::new(self.clone())))
}
}
}
impl OpState for Range {
fn eval(
&mut self,
session: &mut SessionState,
_op: &dyn Op,
inputs: TVec<TValue>,
) -> TractResult<TVec<TValue>> {
let (start, end, step) = args_3!(inputs);
Ok(tvec!(self.make(&start, &end, &step, Some(&session.resolved_symbols))?.into_tvalue()))
}
}
trivial_op_state_freeeze!(Range);
impl Range {
fn make_t<T: Datum + for<'a> std::ops::Add<&'a T, Output = T>>(
start: &Tensor,
step: &Tensor,
len: usize,
) -> TractResult<Tensor> {
unsafe {
let mut result = Tensor::uninitialized::<T>(&[len])?;
let mut v = start.to_scalar::<T>()?.clone();
let step = step.to_scalar::<T>()?;
for i in 0..len {
result.as_slice_mut_unchecked::<T>()[i] = v.clone();
v = v + step;
}
Ok(result)
}
}
fn make(
&self,
start: &Tensor,
end: &Tensor,
step: &Tensor,
values: Option<&SymbolValues>,
) -> TractResult<Tensor> {
if start.datum_type() == TDim::datum_type() {
let none = SymbolValues::default();
let values = values.unwrap_or(&none);
let len = {
let start = start.to_scalar::<TDim>()?.eval(values).to_i64()?;
let end = end.to_scalar::<TDim>()?.eval(values).to_i64()?;
let step = step.to_scalar::<TDim>()?.eval(values).to_i64()?;
#[allow(clippy::cast_abs_to_unsigned)]
((end - start).abs() as usize).divceil(step.abs() as usize)
};
Self::make_t::<TDim>(start, step, len)
} else {
let len = dispatch_numbers!(Self::len_for_numbers(start.datum_type())(
self, start, end, step
))?;
dispatch_numbers!(Self::make_t(start.datum_type())(start, step, len))
}
}
fn len_for_numbers<T: Datum + AsPrimitive<f64>>(
&self,
start: &Tensor,
end: &Tensor,
step: &Tensor,
) -> TractResult<usize> {
let start = start.to_scalar::<T>()?;
let end = end.to_scalar::<T>()?;
let step = step.to_scalar::<T>()?;
Ok(((end.as_() - start.as_()) / (step.as_())).ceil() as usize)
}
}
impl TypedOp for Range {
fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
let [start, end, step] = inputs else {
bail!("Expects three inputs");
};
ensure!(start.datum_type() == end.datum_type());
ensure!(start.datum_type() == step.datum_type());
ensure!(start.rank() == 0);
ensure!(end.rank() == 0);
ensure!(step.rank() == 0);
if let (Some(start), Some(end), Some(step)) = (&start.konst, &end.konst, &step.konst) {
let len = dispatch_numbers!(Self::len_for_numbers(start.datum_type())(
self, start, end, step
))?;
Ok(tvec!(start.datum_type().fact([len])))
} else {
Ok(tvec!(start.datum_type.fact(&[self.len.clone()])))
}
}
as_op!();
}