1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
use crate::internal::*;
use ndarray::*;

#[derive(Debug, Clone, new, Hash)]
pub struct Gather {
    pub axis: usize,
}

impl Op for Gather {
    fn name(&self) -> Cow<str> {
        "Gather".into()
    }

    op_as_typed_op!();
}

impl Gather {
    pub fn compute_output_shape<D: DimLike>(
        &self,
        input_shape: &[D],
        indices_shape: &[D],
    ) -> TractResult<TVec<D>> {
        let mut output_shape:TVec<D> = input_shape[..self.axis].into();
        output_shape.extend(indices_shape.iter().cloned());
        output_shape.extend(input_shape[self.axis + 1..].iter().cloned());
        Ok(output_shape)
    }

    unsafe fn eval_t<T: Datum>(&self, data: TValue, indices: &TValue) -> TractResult<TValue> {
        let data_view = data.to_array_view_unchecked::<T>();
        let indices = indices.cast_to::<i64>()?;
        let indices = indices.to_array_view::<i64>()?;
        let output = ArrayD::from_shape_fn(
            &*self.compute_output_shape(data.shape(), indices.shape())?,
            |coords| {
                let ocoords = coords.as_array_view();
                let ocoords = ocoords.as_slice().unwrap();
                let mut icoords: TVec<usize> = ocoords[0..self.axis].into();
                let kcoords = &ocoords[self.axis..][..indices.ndim()];
                let k = indices[kcoords];
                let k = if k < 0 { k + data_view.shape()[self.axis] as i64 } else { k } as usize;
                icoords.push(k);
                icoords.extend(ocoords[self.axis + indices.ndim()..].iter().copied());
                data_view[&*icoords].clone()
            },
        );
        let mut output = output.into_tensor();
        unsafe { output.set_datum_type(data.datum_type()) };
        Ok(output.into_tvalue())
    }
}

impl TypedOp for Gather {
    as_op!();

    fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
        Ok(tvec!(inputs[0].datum_type.fact(
            &*self.compute_output_shape(&inputs[0].shape.to_tvec(), &inputs[1].shape.to_tvec())?
        )))
    }

    fn declutter(
        &self,
        model: &TypedModel,
        node: &TypedNode,
    ) -> TractResult<Option<TypedModelPatch>> {
        let indices_fact = model.outlet_fact(node.inputs[1])?;
        if let Some(indices) = indices_fact.konst.as_ref() {
            if indices.rank() == 1 && indices.len() == 1 {
                let mut patch = TypedModelPatch::default();
                let mut wire = patch.tap_model(model, node.inputs[0])?;
                let index = indices.cast_to_scalar::<i64>()?;
                let index = if index < 0 {
                    let data_fact = model.outlet_fact(node.inputs[0])?;
                    data_fact.shape[self.axis].clone() + index.to_dim()
                } else {
                    index.to_dim()
                };
                wire = patch.wire_node(
                    format!("{}.slice", node.name),
                    crate::ops::array::Slice {
                        axis: self.axis,
                        start: index.clone(),
                        end: index + 1,
                    },
                    &[wire],
                )?[0];
                patch.shunt_outside(model, node.id.into(), wire)?;
                return Ok(Some(patch));
            }
        }
        Ok(None)
    }
}

impl EvalOp for Gather {
    fn is_stateless(&self) -> bool {
        true
    }

    fn eval(&self, inputs: TVec<TValue>) -> TractResult<TVec<TValue>> {
        let (data, indices) = args_2!(inputs);
        unsafe {
            Ok(tvec!(dispatch_datum_by_size!(Self::eval_t(data.datum_type())(
                self, data, &indices
            ))?))
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_should_gather_scalar_index() {
        let data = Tensor::from(arr1(&[1i64, 2, 3]));
        let gatherer = Gather::new(0);
        for idx in 2..3 {
            let index = Tensor::from(arr0(idx));
            let outputs =
                gatherer.eval(tvec![data.clone().into_tvalue(), index.into_tvalue()]).unwrap();
            let output = &outputs[0];
            assert_eq!(output.shape().len(), 0);
            assert_eq!(*output.to_scalar::<i64>().unwrap(), idx + 1);
        }
    }
}