1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
use crate::internal::*;
use crate::ops::cnn::patches::{Zone, ZoneScanner};
use crate::ops::cnn::Patch;
use crate::ops::nn::DataShape;
#[derive(Debug, Clone, new, Hash)]
pub struct DepthWise {
patch: Patch,
input_shape: DataShape,
output_shape: DataShape,
kernel_chw: Arc<Tensor>,
bias: Arc<Tensor>,
}
impl Op for DepthWise {
fn name(&self) -> Cow<str> {
"DepthWiseConv".into()
}
fn info(&self) -> TractResult<Vec<String>> {
Ok(vec![format!("{:?}", self.patch)])
}
fn validation(&self) -> Validation {
Validation::Rounding
}
op_as_typed_op!();
}
impl EvalOp for DepthWise {
fn is_stateless(&self) -> bool {
true
}
fn eval(&self, inputs: TVec<TValue>) -> TractResult<TVec<TValue>> {
dispatch_floatlike!(Self::eval_t(inputs[0].datum_type())(self, inputs))
}
}
impl DepthWise {
fn eval_t<T: Datum + Copy + num_traits::Zero + ndarray::LinalgScalar>(
&self,
mut inputs: TVec<TValue>,
) -> TractResult<TVec<TValue>> {
let img = args_1!(inputs);
let mut output = unsafe { Tensor::uninitialized::<T>(&self.output_shape.shape)? };
let iptr = img.as_ptr::<T>()?;
let optr = output.as_ptr_mut::<T>()?;
let k_stride_i = self.kernel_chw.strides()[1];
let n = *self.input_shape.n().unwrap_or(&1);
let n_stride_i = *self.input_shape.n_stride().unwrap_or(&0) as isize;
let n_stride_o = *self.output_shape.n_stride().unwrap_or(&0) as isize;
let c_stride_i = *self.input_shape.c_stride() as isize;
let c_stride_o = *self.output_shape.c_stride() as isize;
let bias = self.bias.as_ptr::<T>()?;
let kptr = self.kernel_chw.as_ptr::<T>()?;
unsafe {
for n in 0..n as isize {
let iptr = iptr.offset(n_stride_i * n);
let optr = optr.offset(n_stride_o * n);
for zone in &self.patch.zones {
self.process_zone(
zone, c_stride_i, c_stride_o, k_stride_i, iptr, kptr, bias, optr,
)
}
}
}
Ok(tvec!(output.into_tvalue()))
}
#[inline(never)]
#[allow(clippy::too_many_arguments)]
unsafe fn process_zone<T: Datum + Copy + ndarray::LinalgScalar>(
&self,
zone: &Zone,
c_stride_i: isize,
c_stride_o: isize,
k_stride_i: isize,
iptr: *const T,
kptr: *const T,
bias: *const T,
optr: *mut T,
) {
if zone.values_offsets.len() == 4 {
self.process_zone_4(zone, c_stride_i, c_stride_o, k_stride_i, iptr, kptr, bias, optr)
} else {
zone.visit_output(&self.patch, |visitor| {
for c in 0..*self.input_shape.c() as isize {
let iptr = iptr.offset(c_stride_i * c);
let optr = optr.offset(c_stride_o * c);
let kptr = kptr.offset(k_stride_i * c);
Self::inner_loop::<T>(iptr, kptr, bias, optr, c, visitor)
}
})
}
}
#[inline(never)]
#[allow(clippy::too_many_arguments)]
unsafe fn process_zone_4<T: Datum + Copy + ndarray::LinalgScalar>(
&self,
zone: &Zone,
c_stride_i: isize,
c_stride_o: isize,
k_stride_i: isize,
iptr: *const T,
kptr: *const T,
bias: *const T,
optr: *mut T,
) {
let mut visitor = ZoneScanner::new(zone, &self.patch);
let ioffset0 = zone.values_offsets[0].1;
let ioffset1 = zone.values_offsets[1].1;
let ioffset2 = zone.values_offsets[2].1;
let ioffset3 = zone.values_offsets[3].1;
for c in 0..*self.input_shape.c() as isize {
visitor.reset();
let kptr = kptr.offset(k_stride_i * c);
let iptr = iptr.offset(c_stride_i * c);
let optr = optr.offset(c_stride_o * c);
let k0 = *kptr.add(zone.values_offsets[0].0);
let k1 = *kptr.add(zone.values_offsets[1].0);
let k2 = *kptr.add(zone.values_offsets[2].0);
let k3 = *kptr.add(zone.values_offsets[3].0);
let bias = *bias.offset(c);
while !visitor.done {
let iptr = iptr.offset(visitor.input_center_offset);
let optr = optr.offset(visitor.output_offset);
let mut i = 0isize;
while i + 4 < visitor.inner_loop_len as isize {
let iptr_a = iptr.offset(visitor.inner_loop_input_full_stride * i);
let iptr_b = iptr.offset(visitor.inner_loop_input_full_stride * (i + 1));
let iptr_c = iptr.offset(visitor.inner_loop_input_full_stride * (i + 2));
let iptr_d = iptr.offset(visitor.inner_loop_input_full_stride * (i + 3));
let optr_a = optr.offset(visitor.inner_loop_output_stride * i);
let optr_b = optr.offset(visitor.inner_loop_output_stride * (i + 1));
let optr_c = optr.offset(visitor.inner_loop_output_stride * (i + 2));
let optr_d = optr.offset(visitor.inner_loop_output_stride * (i + 3));
let i0_a = *iptr_a.offset(ioffset0);
let i0_b = *iptr_b.offset(ioffset0);
let i0_c = *iptr_c.offset(ioffset0);
let i0_d = *iptr_d.offset(ioffset0);
let i1_a = *iptr_a.offset(ioffset1);
let i1_b = *iptr_b.offset(ioffset1);
let i1_c = *iptr_c.offset(ioffset1);
let i1_d = *iptr_d.offset(ioffset1);
let i2_a = *iptr_a.offset(ioffset2);
let i2_b = *iptr_b.offset(ioffset2);
let i2_c = *iptr_c.offset(ioffset2);
let i2_d = *iptr_d.offset(ioffset2);
let i3_a = *iptr_a.offset(ioffset3);
let i3_b = *iptr_b.offset(ioffset3);
let i3_c = *iptr_c.offset(ioffset3);
let i3_d = *iptr_d.offset(ioffset3);
let p0_a = i0_a * k0;
let p1_a = i1_a * k1;
let p2_a = i2_a * k2;
let p3_a = i3_a * k3;
let p0_b = i0_b * k0;
let p1_b = i1_b * k1;
let p2_b = i2_b * k2;
let p3_b = i3_b * k3;
let p0_c = i0_c * k0;
let p1_c = i1_c * k1;
let p2_c = i2_c * k2;
let p3_c = i3_c * k3;
let p0_d = i0_d * k0;
let p1_d = i1_d * k1;
let p2_d = i2_d * k2;
let p3_d = i3_d * k3;
*optr_a = bias + p0_a + p1_a + p2_a + p3_a;
*optr_b = bias + p0_b + p1_b + p2_b + p3_b;
*optr_c = bias + p0_c + p1_c + p2_c + p3_c;
*optr_d = bias + p0_d + p1_d + p2_d + p3_d;
i += 4;
}
while i < visitor.inner_loop_len as isize {
let iptr = iptr.offset(visitor.inner_loop_input_full_stride * i);
let optr = optr.offset(visitor.inner_loop_output_stride * i);
let i0 = *iptr.offset(ioffset0);
let i1 = *iptr.offset(ioffset1);
let i2 = *iptr.offset(ioffset2);
let i3 = *iptr.offset(ioffset3);
let p0 = i0 * k0;
let p1 = i1 * k1;
let p2 = i2 * k2;
let p3 = i3 * k3;
let sum = bias + p0 + p1 + p2 + p3;
*optr = sum;
i += 1;
}
visitor.next_non_inner_axis()
}
}
}
#[inline(never)]
unsafe fn inner_loop<T: Datum + Copy + ndarray::LinalgScalar>(
iptr: *const T,
kptr: *const T,
bias: *const T,
optr: *mut T,
c: isize,
visitor: &ZoneScanner,
) {
let mut sum = *bias.offset(c);
let mut iter = visitor.valid_offsets_ker_in();
if iter.size_hint() == (4, Some(4)) {
let (ix, v) = iter.next().unwrap();
let k0 = *kptr.add(ix);
let i0 = *iptr.offset(v);
let (ix, v) = iter.next().unwrap();
let k1 = *kptr.add(ix);
let i1 = *iptr.offset(v);
let (ix, v) = iter.next().unwrap();
let k2 = *kptr.add(ix);
let i2 = *iptr.offset(v);
let (ix, v) = iter.next().unwrap();
let k3 = *kptr.add(ix);
let i3 = *iptr.offset(v);
sum = sum + k0 * i0 + k1 * i1 + k2 * i2 + k3 * i3;
} else if iter.size_hint() == (3, Some(3)) {
let (ix, v) = iter.next().unwrap();
let k0 = *kptr.add(ix);
let i0 = *iptr.offset(v);
let (ix, v) = iter.next().unwrap();
let k1 = *kptr.add(ix);
let i1 = *iptr.offset(v);
let (ix, v) = iter.next().unwrap();
let k2 = *kptr.add(ix);
let i2 = *iptr.offset(v);
sum = sum + k0 * i0 + k1 * i1 + k2 * i2;
} else {
for (ix, v) in iter {
let k = *kptr.add(ix);
let i = *iptr.offset(v);
sum = sum + k * i;
}
}
let optr = optr.offset(visitor.output_offset);
*optr = sum;
}
}
impl TypedOp for DepthWise {
fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
anyhow::ensure!(
self.input_shape.c() == self.output_shape.c(),
"DepthWiseConv must have same input and output channels"
);
anyhow::ensure!(
*self.input_shape.c() == self.bias.len(),
"DepthWiseConv data has {} channels, bias has {}",
self.input_shape.c(),
self.bias.len()
);
Ok(tvec!(inputs[0].datum_type.fact(&self.output_shape.shape)))
}
fn cost(&self, inputs: &[&TypedFact]) -> TractResult<TVec<(Cost, TDim)>> {
let n_output_points = self.patch.output_shape.iter().cloned().product::<usize>();
Ok(tvec!((
Cost::FMA(inputs[0].datum_type),
(self.input_shape.n().unwrap_or(&1) * n_output_points * self.kernel_chw.len()).to_dim()
)))
}
as_op!();
}
/* partial alternative impl that may be relevant when simd gets better */
/*
#[inline(never)]
unsafe fn process_zone_4_f32(
&self,
zone: &Zone,
c_stride_i: isize,
c_stride_o: isize,
k_stride_i: isize,
iptr: *const f32,
kptr: *const f32,
bias: *const f32,
optr: *mut f32,
) {
use std::simd::*;
let mut visitor = ZoneScanner::new(zone, &self.patch);
let ioffset0 = zone.values_offsets[0].1;
let ioffset1 = zone.values_offsets[1].1;
let ioffset2 = zone.values_offsets[2].1;
let ioffset3 = zone.values_offsets[3].1;
for c in 0..*self.input_shape.c() as isize {
visitor.reset();
let kptr = kptr.offset(k_stride_i * c);
let iptr = iptr.offset(c_stride_i * c);
let optr = optr.offset(c_stride_o * c);
let k0 = *kptr.offset(zone.values_offsets[0].0 as isize);
let k1 = *kptr.offset(zone.values_offsets[1].0 as isize);
let k2 = *kptr.offset(zone.values_offsets[2].0 as isize);
let k3 = *kptr.offset(zone.values_offsets[3].0 as isize);
let k0 = f32x4::splat(k0);
let k1 = f32x4::splat(k1);
let k2 = f32x4::splat(k2);
let k3 = f32x4::splat(k3);
let bias = f32x4::splat(*bias.offset(c));
while !visitor.done {
let iptr = iptr.offset(visitor.input_center_offset);
let optr = optr.offset(visitor.output_offset);
let mut i = 0;
while i + 4 <
for i in 0..visitor.inner_loop_len as isize {
let iptr = iptr.offset(visitor.inner_loop_input_full_stride * i);
let optr = optr.offset(visitor.inner_loop_output_stride * i);
let i0 = *iptr.offset(ioffset0);
let i1 = *iptr.offset(ioffset1);
let i2 = *iptr.offset(ioffset2);
let i3 = *iptr.offset(ioffset3);
let i = f32x4::from_array([i0, i1, i2, i3]);
let p = (i * k).reduce_sum();
let sum = bias + p;
*optr = sum
}
visitor.next_non_inner_axis()
}
}
}
*/
/*
#[inline(never)]
unsafe fn process_zone_4_f32(
&self,
zone: &Zone,
c_stride_i: isize,
c_stride_o: isize,
k_stride_i: isize,
iptr: *const f32,
kptr: *const f32,
bias: *const f32,
optr: *mut f32,
) {
use std::simd::*;
let mut visitor = ZoneScanner::new(zone, &self.patch);
let ioffset0 = zone.values_offsets[0].1;
let ioffset1 = zone.values_offsets[1].1;
let ioffset2 = zone.values_offsets[2].1;
let ioffset3 = zone.values_offsets[3].1;
for c in 0..*self.input_shape.c() as isize {
visitor.reset();
let kptr = kptr.offset(k_stride_i * c);
let iptr = iptr.offset(c_stride_i * c);
let optr = optr.offset(c_stride_o * c);
let k0 = *kptr.offset(zone.values_offsets[0].0 as isize);
let k1 = *kptr.offset(zone.values_offsets[1].0 as isize);
let k2 = *kptr.offset(zone.values_offsets[2].0 as isize);
let k3 = *kptr.offset(zone.values_offsets[3].0 as isize);
let k = f32x4::from_array([k0, k1, k2, k3]);
let bias = *bias.offset(c);
while !visitor.done {
let iptr = iptr.offset(visitor.input_center_offset);
let optr = optr.offset(visitor.output_offset);
for i in 0..visitor.inner_loop_len as isize {
let iptr = iptr.offset(visitor.inner_loop_input_full_stride * i);
let optr = optr.offset(visitor.inner_loop_output_stride * i);
let i0 = *iptr.offset(ioffset0);
let i1 = *iptr.offset(ioffset1);
let i2 = *iptr.offset(ioffset2);
let i3 = *iptr.offset(ioffset3);
let i = f32x4::from_array([i0, i1, i2, i3]);
let p = (i * k).reduce_sum();
let sum = bias + p;
*optr = sum
}
visitor.next_non_inner_axis()
}
}
}
*/
/*
#[inline(never)]
unsafe fn process_zone_4<T: Datum + Copy + ndarray::LinalgScalar>(
&self,
zone: &Zone,
c_stride_i: isize,
c_stride_o: isize,
k_stride_i: isize,
iptr: *const T,
kptr: *const T,
bias: *const T,
optr: *mut T,
) {
let mut visitor = ZoneScanner::new(zone, &self.patch);
let ioffset0 = zone.values_offsets[0].1;
let ioffset1 = zone.values_offsets[1].1;
let ioffset2 = zone.values_offsets[2].1;
let ioffset3 = zone.values_offsets[3].1;
for c in 0..*self.input_shape.c() as isize {
visitor.reset();
let kptr = kptr.offset(k_stride_i * c);
let iptr = iptr.offset(c_stride_i * c);
let optr = optr.offset(c_stride_o * c);
let k0 = *kptr.offset(zone.values_offsets[0].0 as isize);
let k1 = *kptr.offset(zone.values_offsets[1].0 as isize);
let k2 = *kptr.offset(zone.values_offsets[2].0 as isize);
let k3 = *kptr.offset(zone.values_offsets[3].0 as isize);
let bias = *bias.offset(c);
while !visitor.done {
let iptr = iptr.offset(visitor.input_center_offset);
let optr = optr.offset(visitor.output_offset);
for i in 0..visitor.inner_loop_len as isize {
let iptr = iptr.offset(visitor.inner_loop_input_full_stride * i);
let optr = optr.offset(visitor.inner_loop_output_stride * i);
let i0 = *iptr.offset(ioffset0);
let i1 = *iptr.offset(ioffset1);
let i2 = *iptr.offset(ioffset2);
let i3 = *iptr.offset(ioffset3);
let p0 = i0 * k0;
let p1 = i1 * k1;
let p2 = i2 * k2;
let p3 = i3 * k3;
let sum = bias + p0 + p1 + p2 + p3;
*optr = sum
}
visitor.next_non_inner_axis()
}
}
}
*/