1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
use crate::internal::*;
use crate::ops::cnn::patches::{Zone, ZoneScanner};
use crate::ops::cnn::Patch;
use crate::ops::nn::DataShape;

#[derive(Debug, Clone, new, Hash)]
pub struct DepthWise {
    patch: Patch,
    input_shape: DataShape,
    output_shape: DataShape,
    kernel_chw: Arc<Tensor>,
    bias: Arc<Tensor>,
}



impl Op for DepthWise {
    fn name(&self) -> Cow<str> {
        "DepthWiseConv".into()
    }

    fn info(&self) -> TractResult<Vec<String>> {
        Ok(vec![format!("{:?}", self.patch)])
    }

    fn validation(&self) -> Validation {
        Validation::Rounding
    }

    op_as_typed_op!();
}

impl EvalOp for DepthWise {
    fn is_stateless(&self) -> bool {
        true
    }

    fn eval(&self, inputs: TVec<TValue>) -> TractResult<TVec<TValue>> {
        dispatch_floatlike!(Self::eval_t(inputs[0].datum_type())(self, inputs))
    }
}

impl DepthWise {
    fn eval_t<T: Datum + Copy + num_traits::Zero + ndarray::LinalgScalar>(
        &self,
        mut inputs: TVec<TValue>,
    ) -> TractResult<TVec<TValue>> {
        let img = args_1!(inputs);
        let mut output = unsafe { Tensor::uninitialized::<T>(&self.output_shape.shape)? };
        let iptr = img.as_ptr::<T>()?;
        let optr = output.as_ptr_mut::<T>()?;
        let k_stride_i = self.kernel_chw.strides()[1];
        let n = *self.input_shape.n().unwrap_or(&1);
        let n_stride_i = *self.input_shape.n_stride().unwrap_or(&0) as isize;
        let n_stride_o = *self.output_shape.n_stride().unwrap_or(&0) as isize;
        let c_stride_i = *self.input_shape.c_stride() as isize;
        let c_stride_o = *self.output_shape.c_stride() as isize;
        let bias = self.bias.as_ptr::<T>()?;
        let kptr = self.kernel_chw.as_ptr::<T>()?;
        unsafe {
            for n in 0..n as isize {
                let iptr = iptr.offset(n_stride_i * n);
                let optr = optr.offset(n_stride_o * n);
                for zone in &self.patch.zones {
                    self.process_zone(
                        zone, c_stride_i, c_stride_o, k_stride_i, iptr, kptr, bias, optr,
                    )
                }
            }
        }
        Ok(tvec!(output.into_tvalue()))
    }

    #[inline(never)]
    #[allow(clippy::too_many_arguments)]
    unsafe fn process_zone<T: Datum + Copy + ndarray::LinalgScalar>(
        &self,
        zone: &Zone,
        c_stride_i: isize,
        c_stride_o: isize,
        k_stride_i: isize,
        iptr: *const T,
        kptr: *const T,
        bias: *const T,
        optr: *mut T,
    ) {
        if zone.values_offsets.len() == 4 {
            self.process_zone_4(zone, c_stride_i, c_stride_o, k_stride_i, iptr, kptr, bias, optr)
        } else {
            zone.visit_output(&self.patch, |visitor| {
                for c in 0..*self.input_shape.c() as isize {
                    let iptr = iptr.offset(c_stride_i * c);
                    let optr = optr.offset(c_stride_o * c);
                    let kptr = kptr.offset(k_stride_i * c);
                    Self::inner_loop::<T>(iptr, kptr, bias, optr, c, visitor)
                }
            })
        }
    }

    #[inline(never)]
    #[allow(clippy::too_many_arguments)]
    unsafe fn process_zone_4<T: Datum + Copy + ndarray::LinalgScalar>(
        &self,
        zone: &Zone,
        c_stride_i: isize,
        c_stride_o: isize,
        k_stride_i: isize,
        iptr: *const T,
        kptr: *const T,
        bias: *const T,
        optr: *mut T,
    ) {
        let mut visitor = ZoneScanner::new(zone, &self.patch);
        let ioffset0 = zone.values_offsets[0].1;
        let ioffset1 = zone.values_offsets[1].1;
        let ioffset2 = zone.values_offsets[2].1;
        let ioffset3 = zone.values_offsets[3].1;
        for c in 0..*self.input_shape.c() as isize {
            visitor.reset();
            let kptr = kptr.offset(k_stride_i * c);
            let iptr = iptr.offset(c_stride_i * c);
            let optr = optr.offset(c_stride_o * c);
            let k0 = *kptr.add(zone.values_offsets[0].0);
            let k1 = *kptr.add(zone.values_offsets[1].0);
            let k2 = *kptr.add(zone.values_offsets[2].0);
            let k3 = *kptr.add(zone.values_offsets[3].0);
            let bias = *bias.offset(c);
            while !visitor.done {
                let iptr = iptr.offset(visitor.input_center_offset);
                let optr = optr.offset(visitor.output_offset);
                let mut i = 0isize;
                while i + 4 < visitor.inner_loop_len as isize {
                    let iptr_a = iptr.offset(visitor.inner_loop_input_full_stride * i);
                    let iptr_b = iptr.offset(visitor.inner_loop_input_full_stride * (i + 1));
                    let iptr_c = iptr.offset(visitor.inner_loop_input_full_stride * (i + 2));
                    let iptr_d = iptr.offset(visitor.inner_loop_input_full_stride * (i + 3));
                    let optr_a = optr.offset(visitor.inner_loop_output_stride * i);
                    let optr_b = optr.offset(visitor.inner_loop_output_stride * (i + 1));
                    let optr_c = optr.offset(visitor.inner_loop_output_stride * (i + 2));
                    let optr_d = optr.offset(visitor.inner_loop_output_stride * (i + 3));
                    let i0_a = *iptr_a.offset(ioffset0);
                    let i0_b = *iptr_b.offset(ioffset0);
                    let i0_c = *iptr_c.offset(ioffset0);
                    let i0_d = *iptr_d.offset(ioffset0);
                    let i1_a = *iptr_a.offset(ioffset1);
                    let i1_b = *iptr_b.offset(ioffset1);
                    let i1_c = *iptr_c.offset(ioffset1);
                    let i1_d = *iptr_d.offset(ioffset1);
                    let i2_a = *iptr_a.offset(ioffset2);
                    let i2_b = *iptr_b.offset(ioffset2);
                    let i2_c = *iptr_c.offset(ioffset2);
                    let i2_d = *iptr_d.offset(ioffset2);
                    let i3_a = *iptr_a.offset(ioffset3);
                    let i3_b = *iptr_b.offset(ioffset3);
                    let i3_c = *iptr_c.offset(ioffset3);
                    let i3_d = *iptr_d.offset(ioffset3);
                    let p0_a = i0_a * k0;
                    let p1_a = i1_a * k1;
                    let p2_a = i2_a * k2;
                    let p3_a = i3_a * k3;
                    let p0_b = i0_b * k0;
                    let p1_b = i1_b * k1;
                    let p2_b = i2_b * k2;
                    let p3_b = i3_b * k3;
                    let p0_c = i0_c * k0;
                    let p1_c = i1_c * k1;
                    let p2_c = i2_c * k2;
                    let p3_c = i3_c * k3;
                    let p0_d = i0_d * k0;
                    let p1_d = i1_d * k1;
                    let p2_d = i2_d * k2;
                    let p3_d = i3_d * k3;
                    *optr_a = bias + p0_a + p1_a + p2_a + p3_a;
                    *optr_b = bias + p0_b + p1_b + p2_b + p3_b;
                    *optr_c = bias + p0_c + p1_c + p2_c + p3_c;
                    *optr_d = bias + p0_d + p1_d + p2_d + p3_d;
                    i += 4;
                }
                while i < visitor.inner_loop_len as isize {
                    let iptr = iptr.offset(visitor.inner_loop_input_full_stride * i);
                    let optr = optr.offset(visitor.inner_loop_output_stride * i);
                    let i0 = *iptr.offset(ioffset0);
                    let i1 = *iptr.offset(ioffset1);
                    let i2 = *iptr.offset(ioffset2);
                    let i3 = *iptr.offset(ioffset3);
                    let p0 = i0 * k0;
                    let p1 = i1 * k1;
                    let p2 = i2 * k2;
                    let p3 = i3 * k3;
                    let sum = bias + p0 + p1 + p2 + p3;
                    *optr = sum;
                    i += 1;
                }
                visitor.next_non_inner_axis()
            }
        }
    }

    #[inline(never)]
    unsafe fn inner_loop<T: Datum + Copy + ndarray::LinalgScalar>(
        iptr: *const T,
        kptr: *const T,
        bias: *const T,
        optr: *mut T,
        c: isize,
        visitor: &ZoneScanner,
    ) {
        let mut sum = *bias.offset(c);
        let mut iter = visitor.valid_offsets_ker_in();
        if iter.size_hint() == (4, Some(4)) {
            let (ix, v) = iter.next().unwrap();
            let k0 = *kptr.add(ix);
            let i0 = *iptr.offset(v);
            let (ix, v) = iter.next().unwrap();
            let k1 = *kptr.add(ix);
            let i1 = *iptr.offset(v);
            let (ix, v) = iter.next().unwrap();
            let k2 = *kptr.add(ix);
            let i2 = *iptr.offset(v);
            let (ix, v) = iter.next().unwrap();
            let k3 = *kptr.add(ix);
            let i3 = *iptr.offset(v);
            sum = sum + k0 * i0 + k1 * i1 + k2 * i2 + k3 * i3;
        } else if iter.size_hint() == (3, Some(3)) {
            let (ix, v) = iter.next().unwrap();
            let k0 = *kptr.add(ix);
            let i0 = *iptr.offset(v);
            let (ix, v) = iter.next().unwrap();
            let k1 = *kptr.add(ix);
            let i1 = *iptr.offset(v);
            let (ix, v) = iter.next().unwrap();
            let k2 = *kptr.add(ix);
            let i2 = *iptr.offset(v);
            sum = sum + k0 * i0 + k1 * i1 + k2 * i2;
        } else {
            for (ix, v) in iter {
                let k = *kptr.add(ix);
                let i = *iptr.offset(v);
                sum = sum + k * i;
            }
        }
        let optr = optr.offset(visitor.output_offset);
        *optr = sum;
    }
}

impl TypedOp for DepthWise {
    fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
        anyhow::ensure!(
            self.input_shape.c() == self.output_shape.c(),
            "DepthWiseConv must have same input and output channels"
        );
        anyhow::ensure!(
            *self.input_shape.c() == self.bias.len(),
            "DepthWiseConv data has {} channels, bias has {}",
            self.input_shape.c(),
            self.bias.len()
        );
        Ok(tvec!(inputs[0].datum_type.fact(&self.output_shape.shape)))
    }

    fn cost(&self, inputs: &[&TypedFact]) -> TractResult<TVec<(Cost, TDim)>> {
        let n_output_points = self.patch.output_shape.iter().cloned().product::<usize>();
        Ok(tvec!((
            Cost::FMA(inputs[0].datum_type),
            (self.input_shape.n().unwrap_or(&1) * n_output_points * self.kernel_chw.len()).to_dim()
        )))
    }

    as_op!();
}

/* partial alternative impl that may be relevant when simd gets better */

/*
#[inline(never)]
unsafe fn process_zone_4_f32(
    &self,
    zone: &Zone,
    c_stride_i: isize,
    c_stride_o: isize,
    k_stride_i: isize,
    iptr: *const f32,
    kptr: *const f32,
    bias: *const f32,
    optr: *mut f32,
) {
    use std::simd::*;
    let mut visitor = ZoneScanner::new(zone, &self.patch);
    let ioffset0 = zone.values_offsets[0].1;
    let ioffset1 = zone.values_offsets[1].1;
    let ioffset2 = zone.values_offsets[2].1;
    let ioffset3 = zone.values_offsets[3].1;
    for c in 0..*self.input_shape.c() as isize {
        visitor.reset();
        let kptr = kptr.offset(k_stride_i * c);
        let iptr = iptr.offset(c_stride_i * c);
        let optr = optr.offset(c_stride_o * c);
        let k0 = *kptr.offset(zone.values_offsets[0].0 as isize);
        let k1 = *kptr.offset(zone.values_offsets[1].0 as isize);
        let k2 = *kptr.offset(zone.values_offsets[2].0 as isize);
        let k3 = *kptr.offset(zone.values_offsets[3].0 as isize);
        let k0 = f32x4::splat(k0);
        let k1 = f32x4::splat(k1);
        let k2 = f32x4::splat(k2);
        let k3 = f32x4::splat(k3);
        let bias = f32x4::splat(*bias.offset(c));
        while !visitor.done {
            let iptr = iptr.offset(visitor.input_center_offset);
            let optr = optr.offset(visitor.output_offset);
            let mut i  = 0;
            while i + 4 <
            for i in 0..visitor.inner_loop_len as isize {
                let iptr = iptr.offset(visitor.inner_loop_input_full_stride * i);
                let optr = optr.offset(visitor.inner_loop_output_stride * i);
                let i0 = *iptr.offset(ioffset0);
                let i1 = *iptr.offset(ioffset1);
                let i2 = *iptr.offset(ioffset2);
                let i3 = *iptr.offset(ioffset3);
                let i = f32x4::from_array([i0, i1, i2, i3]);
                let p = (i * k).reduce_sum();
                let sum = bias + p;
                *optr = sum
            }
            visitor.next_non_inner_axis()
        }
    }
}
*/

/*
#[inline(never)]
unsafe fn process_zone_4_f32(
    &self,
    zone: &Zone,
    c_stride_i: isize,
    c_stride_o: isize,
    k_stride_i: isize,
    iptr: *const f32,
    kptr: *const f32,
    bias: *const f32,
    optr: *mut f32,
) {
    use std::simd::*;
    let mut visitor = ZoneScanner::new(zone, &self.patch);
    let ioffset0 = zone.values_offsets[0].1;
    let ioffset1 = zone.values_offsets[1].1;
    let ioffset2 = zone.values_offsets[2].1;
    let ioffset3 = zone.values_offsets[3].1;
    for c in 0..*self.input_shape.c() as isize {
        visitor.reset();
        let kptr = kptr.offset(k_stride_i * c);
        let iptr = iptr.offset(c_stride_i * c);
        let optr = optr.offset(c_stride_o * c);
        let k0 = *kptr.offset(zone.values_offsets[0].0 as isize);
        let k1 = *kptr.offset(zone.values_offsets[1].0 as isize);
        let k2 = *kptr.offset(zone.values_offsets[2].0 as isize);
        let k3 = *kptr.offset(zone.values_offsets[3].0 as isize);
        let k = f32x4::from_array([k0, k1, k2, k3]);
        let bias = *bias.offset(c);
        while !visitor.done {
            let iptr = iptr.offset(visitor.input_center_offset);
            let optr = optr.offset(visitor.output_offset);
            for i in 0..visitor.inner_loop_len as isize {
                let iptr = iptr.offset(visitor.inner_loop_input_full_stride * i);
                let optr = optr.offset(visitor.inner_loop_output_stride * i);
                let i0 = *iptr.offset(ioffset0);
                let i1 = *iptr.offset(ioffset1);
                let i2 = *iptr.offset(ioffset2);
                let i3 = *iptr.offset(ioffset3);
                let i = f32x4::from_array([i0, i1, i2, i3]);
                let p = (i * k).reduce_sum();
                let sum = bias + p;
                *optr = sum
            }
            visitor.next_non_inner_axis()
        }
    }
}
*/

/*
#[inline(never)]
unsafe fn process_zone_4<T: Datum + Copy + ndarray::LinalgScalar>(
    &self,
    zone: &Zone,
    c_stride_i: isize,
    c_stride_o: isize,
    k_stride_i: isize,
    iptr: *const T,
    kptr: *const T,
    bias: *const T,
    optr: *mut T,
) {
    let mut visitor = ZoneScanner::new(zone, &self.patch);
    let ioffset0 = zone.values_offsets[0].1;
    let ioffset1 = zone.values_offsets[1].1;
    let ioffset2 = zone.values_offsets[2].1;
    let ioffset3 = zone.values_offsets[3].1;
    for c in 0..*self.input_shape.c() as isize {
        visitor.reset();
        let kptr = kptr.offset(k_stride_i * c);
        let iptr = iptr.offset(c_stride_i * c);
        let optr = optr.offset(c_stride_o * c);
        let k0 = *kptr.offset(zone.values_offsets[0].0 as isize);
        let k1 = *kptr.offset(zone.values_offsets[1].0 as isize);
        let k2 = *kptr.offset(zone.values_offsets[2].0 as isize);
        let k3 = *kptr.offset(zone.values_offsets[3].0 as isize);
        let bias = *bias.offset(c);
        while !visitor.done {
            let iptr = iptr.offset(visitor.input_center_offset);
            let optr = optr.offset(visitor.output_offset);
            for i in 0..visitor.inner_loop_len as isize {
                let iptr = iptr.offset(visitor.inner_loop_input_full_stride * i);
                let optr = optr.offset(visitor.inner_loop_output_stride * i);
                let i0 = *iptr.offset(ioffset0);
                let i1 = *iptr.offset(ioffset1);
                let i2 = *iptr.offset(ioffset2);
                let i3 = *iptr.offset(ioffset3);
                let p0 = i0 * k0;
                let p1 = i1 * k1;
                let p2 = i2 * k2;
                let p3 = i3 * k3;
                let sum = bias + p0 + p1 + p2 + p3;
                *optr = sum
            }
            visitor.next_non_inner_axis()
        }
    }
}
*/