1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
use crate::ops::prelude::*;
#[derive(Debug, Clone, new, Default)]
pub struct Flatten {
axis: usize,
}
impl Flatten {
fn eval_t<T: Datum>(
&self,
input: SharedTensor,
shape: (usize, usize),
) -> TractResult<TVec<SharedTensor>> {
Ok(tvec![input.to_array::<T>()?.into_shape(shape)?.into()])
}
}
impl Op for Flatten {
fn name(&self) -> Cow<str> {
"Flatten".into()
}
}
impl StatelessOp for Flatten {
fn eval(&self, mut inputs: TVec<SharedTensor>) -> TractResult<TVec<SharedTensor>> {
let input = args_1!(inputs);
let shape_0 = input.shape()[..self.axis].iter().product::<usize>();
let shape_1 = input.shape()[self.axis..].iter().product::<usize>();
dispatch_datum!(Self::eval_t(input.datum_type())(
self,
input,
(shape_0, shape_1)
))
}
}
impl InferenceRulesOp for Flatten {
fn rules<'r, 'p: 'r, 's: 'r>(
&'s self,
s: &mut Solver<'r>,
inputs: &'p SharedTensorsProxy,
outputs: &'p SharedTensorsProxy,
) -> InferenceResult {
s.equals(&outputs[0].datum_type, &inputs[0].datum_type)?;
s.given(&inputs[0].shape, move |s, shape| {
let shape_0 = shape[..self.axis]
.iter()
.fold(TDim::from(1), |acc, &v| acc * v);
let shape_1 = shape[self.axis..]
.iter()
.fold(TDim::from(1), |acc, &v| acc * v);
s.equals(&outputs[0].shape, ShapeFact::from(vec![shape_0, shape_1]))
})
}
}