1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
use crate::ops::prelude::*; #[derive(Debug, Clone)] pub enum PaddingSpec { Explicit(TVec<usize>, TVec<usize>), Valid, SameUpper, SameLower, } impl Default for PaddingSpec { fn default() -> PaddingSpec { PaddingSpec::Valid } } #[derive(Debug, Clone)] pub struct ComputedPaddedDim<D: DimLike> { pub pad_before: TVec<D>, pub pad_after: TVec<D>, pub output: TVec<D>, } impl PaddingSpec { pub fn valid_dim(&self, d: usize) -> bool { match self { PaddingSpec::Valid => true, PaddingSpec::Explicit(a, b) => a[d] == 0 && b[d] == 0, _ => false, } } pub fn rm_axis(&self, d: usize) -> PaddingSpec { match self { PaddingSpec::Explicit(a, b) => { let mut a = a.clone(); let mut b = b.clone(); a.remove(d); b.remove(d); PaddingSpec::Explicit(a, b) } _ => self.clone(), } } pub fn compute<D: DimLike, KD: Into<D> + Copy>( &self, input_spatial_shape: &[D], kernel_spatial_shape: &[KD], dilations: &[usize], strides: &[usize], ) -> ComputedPaddedDim<D> { assert_eq!(dilations.len(), strides.len()); assert_eq!(dilations.len(), input_spatial_shape.len()); assert_eq!(dilations.len(), kernel_spatial_shape.len()); match self { PaddingSpec::Valid => Self::explicit( input_spatial_shape, kernel_spatial_shape, dilations, strides, &*vec![0; kernel_spatial_shape.len()], &*vec![0; kernel_spatial_shape.len()], ), PaddingSpec::Explicit(ref bef, ref aft) => Self::explicit( input_spatial_shape, kernel_spatial_shape, dilations, strides, bef, aft, ), PaddingSpec::SameUpper => self.same( input_spatial_shape, kernel_spatial_shape, dilations, strides, true, ), PaddingSpec::SameLower => self.same( input_spatial_shape, kernel_spatial_shape, dilations, strides, false, ), } } fn explicit<D: DimLike, KD: Into<D> + Copy>( data_spatial_shape: &[D], kernel_spatial_shape: &[KD], dilations: &[usize], strides: &[usize], bef: &[usize], aft: &[usize], ) -> ComputedPaddedDim<D> { let spatial_rank = data_spatial_shape.len(); assert_eq!(spatial_rank, kernel_spatial_shape.len()); assert_eq!(spatial_rank, dilations.len()); assert_eq!(spatial_rank, strides.len()); assert_eq!(spatial_rank, aft.len()); assert_eq!(spatial_rank, bef.len()); let output_spatial_shape = (0..spatial_rank) .map(|ax| { let kernel_field = (kernel_spatial_shape[ax].into() - 1) * dilations[ax] + 1; let dim = (data_spatial_shape[ax] + bef[ax] + aft[ax] - kernel_field + 1) .div_ceil(strides[ax]); dim }) .collect(); ComputedPaddedDim { output: output_spatial_shape, pad_before: bef.iter().map(|&x| D::from(x)).collect(), pad_after: aft.iter().map(|&x| D::from(x)).collect(), } } fn same<D: DimLike, KD: Into<D> + Copy>( &self, data_spatial_shape: &[D], kernel_spatial_shape: &[KD], dilations: &[usize], strides: &[usize], upper: bool, ) -> ComputedPaddedDim<D> { let spatial_rank = data_spatial_shape.len(); let mut dims = tvec![]; let mut pad_before = tvec![]; let mut pad_after = tvec![]; for ax in 0..spatial_rank { let dim = data_spatial_shape[ax].div_ceil(strides[ax]); let kernel_field = (kernel_spatial_shape[ax].into() - 1) * dilations[ax] + 1; dims.push(dim); let pad = (dim - 1) * strides[ax] + kernel_field - data_spatial_shape[ax]; let lower_pad = pad / 2; let higher_pad = pad - pad / 2; if upper { pad_before.push(lower_pad); pad_after.push(higher_pad); } else { pad_after.push(lower_pad); pad_before.push(higher_pad); } } ComputedPaddedDim { pad_before, pad_after, output: dims, } } }