1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
use crate::internal::*;
#[derive(new, Debug, Clone, Hash)]
pub struct TypedConcat {
pub axis: usize,
}
impl_dyn_hash!(TypedConcat);
impl TypedConcat {
pub fn offsets(&self, inputs: &[&TypedFact]) -> TractResult<Vec<TDim>> {
let mut offsets = vec![0.to_dim()];
for slice in inputs {
let len = slice.shape[self.axis].clone();
let offset = len + offsets.last().unwrap();
offsets.push(offset)
}
Ok(offsets)
}
}
impl Op for TypedConcat {
fn name(&self) -> Cow<str> {
"Concat".into()
}
fn info(&self) -> TractResult<Vec<String>> {
Ok(vec![format!("axis: {}", self.axis)])
}
op_as_typed_op!();
}
impl TypedOp for TypedConcat {
as_op!();
fn output_facts(&self, inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
let mut fact = inputs[0].without_value();
for input in inputs {
if input.rank() != fact.rank()
|| input
.shape
.iter()
.zip(fact.shape.iter())
.enumerate()
.filter(|(ax, _)| *ax != self.axis)
.any(|(_, (i, f))| i != f)
{
bail!("Inconsistent concat {:?} inputs: {:?}", self, inputs);
}
}
fact.shape.set(self.axis, self.offsets(inputs)?.pop().unwrap());
Ok(tvec!(fact))
}
fn invariants(&self, inputs: &[&TypedFact], outputs: &[&TypedFact]) -> TractResult<Invariants> {
let rank = inputs[0].rank();
(0..rank)
.filter(|&ax| ax != self.axis)
.map(|axis| AxisInfo::for_facts(inputs, outputs, axis))
.collect()
}
fn change_axes(
&self,
model: &TypedModel,
node: &TypedNode,
_io: InOut,
change: &AxisOp,
) -> TractResult<Option<AxisChangeConsequence>> {
let axis =
if let Some(axis) = change.transform_axis(self.axis) { axis } else { return Ok(None) };
let op = TypedConcat { axis };
Ok(Some(AxisChangeConsequence::new(model, node, Some(Box::new(op)), change)))
}
}
impl EvalOp for TypedConcat {
fn is_stateless(&self) -> bool {
true
}
fn eval(&self, inputs: TVec<TValue>) -> TractResult<TVec<TValue>> {
let result = Tensor::stack_tensors(self.axis, &inputs)?;
Ok(tvec![result.into_tvalue()])
}
}