1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
use tract_num_traits::AsPrimitive;

use crate::internal::*;

#[derive(Debug, Default, Clone, new, Hash)]
pub struct Range {
    pub start: Tensor,
    pub end: Tensor,
    pub step: Tensor,
}

impl_dyn_hash!(Range);

impl Op for Range {
    fn name(&self) -> Cow<str> {
        "Range".into()
    }

    op_core!();
    op_as_typed_op!();
}

impl EvalOp for Range {
    fn is_stateless(&self) -> bool {
        self.start.datum_type() != TDim::datum_type()
            || (self.start.to_scalar::<TDim>().unwrap().to_i64().is_ok()
                && self.end.to_scalar::<TDim>().unwrap().to_i64().is_ok()
                && self.step.to_scalar::<TDim>().unwrap().to_i64().is_ok())
    }

    fn eval(&self, _inputs: TVec<Arc<Tensor>>) -> TractResult<TVec<Arc<Tensor>>> {
        let tensor = self.make(None)?;
        Ok(tvec!(tensor.into_arc_tensor()))
    }

    fn state(
        &self,
        _session: &mut SessionState,
        _node_id: usize,
    ) -> TractResult<Option<Box<dyn OpState>>> {
        if self.is_stateless() {
            Ok(None)
        } else {
            Ok(Some(Box::new(self.clone())))
        }
    }
}

impl OpState for Range {
    fn eval(
        &mut self,
        session: &mut SessionState,
        _op: &dyn Op,
        _inputs: TVec<Arc<Tensor>>,
    ) -> TractResult<TVec<Arc<Tensor>>> {
        Ok(tvec!(self.make(Some(&session.resolved_symbols))?.into_arc_tensor()))
    }
}

impl Range {
    fn make_t<T: Datum + for<'a> std::ops::Add<&'a T, Output = T>>(
        start: &Tensor,
        step: &Tensor,
        len: usize,
    ) -> TractResult<Tensor> {
        unsafe {
            let mut result = Tensor::uninitialized::<T>(&[len])?;
            let mut v = start.to_scalar::<T>()?.clone();
            let step = step.to_scalar::<T>()?;
            for i in 0..len {
                result.as_slice_mut_unchecked::<T>()[i] = v.clone();
                v = v + step;
            }
            Ok(result)
        }
    }

    fn make(&self, values: Option<&SymbolValues>) -> TractResult<Tensor> {
        if self.start.datum_type() == TDim::datum_type() {
            let none = SymbolValues::default();
            let values = values.unwrap_or(&none);
            let start = self.start.to_scalar::<TDim>()?.eval(values).to_i64()?;
            let end = self.end.to_scalar::<TDim>()?.eval(values).to_i64()?;
            let step = self.step.to_scalar::<TDim>()?.eval(values).to_i64()?;
            #[allow(clippy::cast_abs_to_unsigned)]
            let len = ((end - start).abs() as usize).divceil(step.abs() as usize);
            Self::make_t::<TDim>(&self.start, &self.step, len)
        } else {
            let len = dispatch_numbers!(Self::len_for_numbers(self.start.datum_type())(self))?;
            dispatch_numbers!(Self::make_t(self.start.datum_type())(&self.start, &self.step, len))
        }
    }

    fn len_for_numbers<T: Datum + AsPrimitive<f64>>(&self) -> TractResult<usize> {
        let start = self.start.to_scalar::<T>()?;
        let end = self.end.to_scalar::<T>()?;
        let step = self.step.to_scalar::<T>()?;
        Ok(((end.as_() - start.as_()) / (step.as_())).ceil() as usize)
    }
}

impl TypedOp for Range {
    fn output_facts(&self, _inputs: &[&TypedFact]) -> TractResult<TVec<TypedFact>> {
        ensure!(self.start.datum_type() == self.end.datum_type());
        ensure!(self.start.datum_type() == self.step.datum_type());
        let len = if self.start.datum_type() == TDim::datum_type() {
            let start = self.start.to_scalar::<TDim>()?;
            let end = self.end.to_scalar::<TDim>()?;
            let step = self.step.to_scalar::<TDim>()?.to_i64()?;
            (end.clone() - start).divceil(step as usize)
        } else {
            dispatch_numbers!(Self::len_for_numbers(self.start.datum_type())(self))?.into()
        };
        Ok(tvec!(self.start.datum_type().fact(&[len])))
    }

    fn concretize_dims(
        &self,
        _source: &TypedModel,
        node: &TypedNode,
        target: &mut TypedModel,
        _mapping: &HashMap<OutletId, OutletId>,
        values: &SymbolValues,
    ) -> TractResult<TVec<OutletId>> {
        let op = if self.start.datum_type() == TDim::datum_type() {
            let start = self.start.to_scalar::<TDim>()?.eval(values).into();
            let end = self.end.to_scalar::<TDim>()?.eval(values).into();
            let step = self.step.to_scalar::<TDim>()?.eval(values).into();
            Self { start, end, step }
        } else {
            self.clone()
        };
        target.wire_node(&node.name, op, &[])
    }

    as_op!();
}