tract_core/model/
typed.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
use crate::internal::*;
use crate::model::*;
use crate::ops;
use crate::ops::invariants;
use crate::optim::OptimizerSession;
use crate::plan::{SimplePlan, SimpleState};

/// A model with completely determined types and shapes.
pub type TypedModel = Graph<TypedFact, Box<dyn TypedOp>>;
/// Node for TypedModel graph
pub type TypedNode = Node<TypedFact, Box<dyn TypedOp>>;
/// A ModelPatch for TypedModel.
pub type TypedModelPatch = ModelPatch<TypedFact, Box<dyn TypedOp>>;
/// An execution plan for TypedModel.
pub type TypedSimplePlan<M> = SimplePlan<TypedFact, Box<dyn TypedOp>, M>;
/// A runnable TypedModel (new name for SimplePlan).
pub type TypedRunnableModel<M> = RunnableModel<TypedFact, Box<dyn TypedOp>, M>;
/// An execution state for TypedModel.
pub type TypedSimpleState<M, P> = SimpleState<TypedFact, Box<dyn TypedOp>, M, P>;

/// A runnable model with fixed inputs and outputs.
pub type RunnableModel<F, O, M> = SimplePlan<F, O, M>;

impl SpecialOps<TypedFact, Box<dyn TypedOp>> for TypedModel {
    fn is_source(op: &Box<dyn TypedOp>) -> bool {
        op.as_op().downcast_ref::<ops::source::TypedSource>().is_some()
    }

    fn create_dummy(&self) -> Box<dyn TypedOp> {
        Box::new(crate::ops::dummy::Dummy::new())
    }

    fn create_source(&self, fact: TypedFact) -> Box<dyn TypedOp> {
        Box::new(crate::ops::source::TypedSource::new(fact))
    }

    fn wire_node(
        &mut self,
        name: impl Into<String>,
        op: impl Into<Box<dyn TypedOp>>,
        inputs: &[OutletId],
    ) -> TractResult<TVec<OutletId>> {
        let op = op.into();
        let name = name.into();

        {
            let output_facts = || {
                let input_facts = inputs
                    .iter()
                    .map(|o| self.outlet_fact(*o))
                    .collect::<TractResult<TVec<_>>>()?;
                if input_facts.iter().all(|f| f.konst.is_some()) && op.is_stateless() {
                    let tensors =
                        input_facts.iter().map(|f| f.konst.clone().unwrap()).collect::<TVec<_>>();
                    if let Ok(outputs) = op.eval(tensors) {
                        return Ok(outputs.into_iter().map(|t| TypedFact::from(t)).collect());
                    }
                }
                op.output_facts(&*input_facts).context("in output_facts invocation")
            };

            let output_facts = output_facts()
                .with_context(|| format!("wiring {} ({:?}), determining output_facts", name, op))?;
            let id = self.add_node(&name, &op, output_facts)?;
            inputs
                .iter()
                .enumerate()
                .try_for_each(|(ix, i)| self.add_edge(*i, InletId::new(id, ix)))?;
            TractResult::Ok(
                self.node(id)
                    .outputs
                    .iter()
                    .enumerate()
                    .map(|(ix, _)| OutletId::new(id, ix))
                    .collect(),
            )
        }
        .with_context(|| format!("Wiring node \"{}\", {:?}", name, op))
    }
}

impl TypedModel {
    pub fn signature(&self) -> u64 {
        use std::hash::Hasher;
        let mut hasher = std::collections::hash_map::DefaultHasher::new();
        self.hash(&mut hasher);
        hasher.finish()
    }

    pub fn into_optimized(mut self) -> TractResult<TypedModel> {
        self.declutter()?;
        self.optimize()?;
        Ok(self)
    }

    #[cfg(all(debug_assertions, feature = "paranoid_assertions"))]
    pub fn check_consistent_facts(&self) -> TractResult<()> {
        for node_id in &self.eval_order()? {
            let input_facts = self.node_input_facts(*node_id)?;
            let node = &self.nodes[*node_id];
            if node.id != *node_id {
                bail!("Node at position {} has id {}", node_id, node.id);
            }
            let output_facts = node.op.output_facts(&input_facts)?;
            if node.outputs.len() != output_facts.len() {
                bail!(
                    "Inconsistent model, node output count mismatch. Op says {}, node says {}. {}",
                    output_facts.len(),
                    node.outputs.len(),
                    node
                );
            }
            if node
                .outputs
                .iter()
                .map(|o| &o.fact)
                .zip(output_facts.iter())
                .any(|(a, b)| a.datum_type != b.datum_type || a.shape != b.shape)
            {
                bail!(
                            "Inconsistent model, output types mismatch. Op says: {:?}, node says: {:?}. {} with inputs {:?}. {}",
                            output_facts, node.outputs.iter().map(|o| &o.fact).collect::<Vec<_>>(), node, input_facts, node)
            }
        }
        for node in &self.nodes {
            for (ix, output) in node.outputs.iter().enumerate() {
                output.fact.consistent().with_context(|| {
                    format!("Inconsistent fact {:?}: {:?}", OutletId::new(node.id, ix), output.fact)
                })?
            }
        }
        Ok(())
    }

    pub fn into_decluttered(mut self) -> TractResult<TypedModel> {
        self.declutter()?;
        Ok(self)
    }

    /// Perform declutter passes on the network.
    pub fn declutter(&mut self) -> TractResult<()> {
        crate::optim::Optimizer::declutter().session().optimize(self)
    }

    /// Perform optimization passes on the model, using a given optimizer session.
    pub fn optimize_with_session(&mut self, session: &mut OptimizerSession) -> TractResult<()> {
        session.optimize(self)
    }

    pub fn concretize_dims(&self, values: &SymbolValues) -> TractResult<TypedModel> {
        use crate::model::translator::Translate;
        impl Translate<TypedFact, Box<dyn TypedOp>, TypedFact, Box<dyn TypedOp>> for SymbolValues {
            fn translate_node(
                &self,
                source: &TypedModel,
                node: &TypedNode,
                target: &mut TypedModel,
                mapping: &HashMap<OutletId, OutletId>,
            ) -> TractResult<TVec<OutletId>> {
                node.op.concretize_dims(source, node, target, mapping, self)
            }
        }
        values.translate_model(&self)
    }

    /// Translate the graph to locally optimized operators (LIR or MIR ops).
    pub fn optimize(&mut self) -> TractResult<()> {
        crate::optim::Optimizer::codegen().optimize(self)
    }

    pub fn invariants(&self) -> TractResult<invariants::Invariants> {
        invariants::for_model(self)
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test() {
        fn is_sync<T: Sync>() {}
        is_sync::<TypedModel>();
    }
}