1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
//! # Overview
//!
//! This crate provides sessions, key-value pairs associated with a site
//! visitor, as a [`tower`](https://docs.rs/tower/latest/tower/) middleware.
//!
//! It offers:
//!
//! - **Pluggable Storage Backends:** Bring your own backend simply by
//!   implementing the [`SessionStore`] trait, fully decoupling sessions from
//!   their storage.
//! - **Minimal Overhead**: Sessions are only loaded from their backing stores
//!   when they're actually used and only in e.g. the handler they're used in.
//!   That means this middleware can be installed at any point in your route
//!   graph with minimal overhead.
//! - **An `axum` Extractor for [`Session`]:** Applications built with `axum`
//!   can use `Session` as an extractor directly in their handlers. This makes
//!   using sessions as easy as including `Session` in your handler.
//! - **Simple Key-Value Interface:** Sessions offer a key-value interface that
//!   supports native Rust types. So long as these types are `Serialize` and can
//!   be converted to JSON, it's straightforward to insert, get, and remove any
//!   value.
//! - **Strongly-Typed Sessions:** Strong typing guarantees are easy to layer on
//!   top of this foundational key-value interface.
//!
//! This crate's session implementation is inspired by the [Django sessions middleware](https://docs.djangoproject.com/en/4.2/topics/http/sessions) and it provides a transliteration of those semantics.
//! ### Session stores
//!
//! Session data persistence is managed by user-provided types that implement
//! [`SessionStore`]. What this means is that applications can and should
//! implement session stores to fit their specific needs.
//!
//! That said, a number of session store implmentations already exist and may be
//! useful starting points.
//!
//! | Crate                                                                                                            | Persistent | Description                                |
//! | ---------------------------------------------------------------------------------------------------------------- | ---------- | ------------------------------------------ |
//! | [`tower-sessions-dynamodb-store`](https://github.com/necrobious/tower-sessions-dynamodb-store)                   | Yes        | DynamoDB session store                     |
//! | [`tower-sessions-firestore-store`](https://github.com/AtTheTavern/tower-sessions-firestore-store)                | Yes        | Firestore session store                    |
//! | [`tower-sessions-libsql-store`](https://github.com/daybowbow-dev/tower-sessions-libsql-store)                    | Yes        | libSQL session store                       |
//! | [`tower-sessions-mongodb-store`](https://github.com/maxcountryman/tower-sessions-stores/tree/main/mongodb-store) | Yes        | MongoDB session store                      |
//! | [`tower-sessions-moka-store`](https://github.com/maxcountryman/tower-sessions-stores/tree/main/moka-store)       | No         | Moka session store                         |
//! | [`tower-sessions-redis-store`](https://github.com/maxcountryman/tower-sessions-stores/tree/main/redis-store)     | Yes        | Redis via `fred` session store             |
//! | [`tower-sessions-rusqlite-store`](https://github.com/patte/tower-sessions-rusqlite-store)                        | Yes        | Rusqlite session store                     |
//! | [`tower-sessions-sled-store`](https://github.com/Zatzou/tower-sessions-sled-store)                               | Yes        | Sled session store                         |
//! | [`tower-sessions-sqlx-store`](https://github.com/maxcountryman/tower-sessions-stores/tree/main/sqlx-store)       | Yes        | SQLite, Postgres, and MySQL session stores |
//! | [`tower-sessions-surrealdb-store`](https://github.com/rynoV/tower-sessions-surrealdb-store)                      | Yes        | SurrealDB session store                    |
//!
//! Have a store to add? Please open a PR adding it.
//!
//! ### User session management
//!
//! To facilitate authentication and authorization, we've built [`axum-login`](https://github.com/maxcountryman/axum-login) on top of this crate. Please check it out if you're looking for a generalized auth solution.
//!
//! # Usage with an `axum` application
//!
//! A common use-case for sessions is when building HTTP servers. Using `axum`,
//! it's straightforward to leverage sessions.
//!
//! ```rust,no_run
//! use std::net::SocketAddr;
//!
//! use axum::{response::IntoResponse, routing::get, Router};
//! use serde::{Deserialize, Serialize};
//! use time::Duration;
//! use tower_sessions::{Expiry, MemoryStore, Session, SessionManagerLayer};
//!
//! const COUNTER_KEY: &str = "counter";
//!
//! #[derive(Default, Deserialize, Serialize)]
//! struct Counter(usize);
//!
//! async fn handler(session: Session) -> impl IntoResponse {
//!     let counter: Counter = session.get(COUNTER_KEY).await.unwrap().unwrap_or_default();
//!     session.insert(COUNTER_KEY, counter.0 + 1).await.unwrap();
//!     format!("Current count: {}", counter.0)
//! }
//!
//! #[tokio::main]
//! async fn main() {
//!     let session_store = MemoryStore::default();
//!     let session_layer = SessionManagerLayer::new(session_store)
//!         .with_secure(false)
//!         .with_expiry(Expiry::OnInactivity(Duration::seconds(10)));
//!
//!     let app = Router::new().route("/", get(handler)).layer(session_layer);
//!
//!     let addr = SocketAddr::from(([127, 0, 0, 1], 3000));
//!     let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
//!     axum::serve(listener, app.into_make_service())
//!         .await
//!         .unwrap();
//! }
//! ```
//!
//! ## Session expiry management
//!
//! In cases where you are utilizing stores that lack automatic session expiry
//! functionality, such as SQLx or MongoDB stores, it becomes essential to
//! periodically clean up stale sessions. For instance, both SQLx and MongoDB
//! stores offer
//! `continuously_delete_expired`
//! which is designed to be executed as a recurring task. This process ensures
//! the removal of expired sessions, maintaining your application's data
//! integrity and performance.
//! ```rust,no_run,ignore
//! # use tower_sessions::{session_store::ExpiredDeletion};
//! # use tower_sessions_sqlx_store::{sqlx::SqlitePool, SqliteStore};
//! # tokio_test::block_on(async {
//! let pool = SqlitePool::connect("sqlite::memory:").await.unwrap();
//! let session_store = SqliteStore::new(pool);
//! let deletion_task = tokio::task::spawn(
//!     session_store
//!         .clone()
//!         .continuously_delete_expired(tokio::time::Duration::from_secs(60)),
//! );
//! deletion_task.await.unwrap().unwrap();
//! # });
//! ```
//!
//! Note that by default or when using browser session expiration, sessions are
//! considered expired after two weeks.
//!
//! # Extractor pattern
//!
//! When using `axum`, the [`Session`] will already function as an extractor.
//! It's possible to build further on this to create extractors of custom types.
//! ```rust,no_run
//! # use async_trait::async_trait;
//! # use axum::extract::FromRequestParts;
//! # use http::{request::Parts, StatusCode};
//! # use serde::{Deserialize, Serialize};
//! # use tower_sessions::{SessionStore, Session, MemoryStore};
//! const COUNTER_KEY: &str = "counter";
//!
//! #[derive(Default, Deserialize, Serialize)]
//! struct Counter(usize);
//!
//! #[async_trait]
//! impl<S> FromRequestParts<S> for Counter
//! where
//!     S: Send + Sync,
//! {
//!     type Rejection = (http::StatusCode, &'static str);
//!
//!     async fn from_request_parts(req: &mut Parts, state: &S) -> Result<Self, Self::Rejection> {
//!         let session = Session::from_request_parts(req, state).await?;
//!         let counter: Counter = session.get(COUNTER_KEY).await.unwrap().unwrap_or_default();
//!         session.insert(COUNTER_KEY, counter.0 + 1).await.unwrap();
//!
//!         Ok(counter)
//!     }
//! }
//! ```
//!
//! Now in our handler, we can use `Counter` directly to read its fields.
//!
//! A complete example can be found in [`examples/counter-extractor.rs`](https://github.com/maxcountryman/tower-sessions/blob/main/examples/counter-extractor.rs).
//!
//! # Strongly-typed sessions
//!
//! The extractor pattern can be extended further to provide strong typing
//! guarantees over the key-value substrate. Whereas our previous extractor
//! example was effectively read-only. This pattern enables mutability of the
//! underlying structure while also leveraging the full power of the type
//! system.
//! ```rust,no_run
//! # use async_trait::async_trait;
//! # use axum::extract::FromRequestParts;
//! # use http::{request::Parts, StatusCode};
//! # use serde::{Deserialize, Serialize};
//! # use time::OffsetDateTime;
//! # use tower_sessions::{SessionStore, Session};
//! #[derive(Clone, Deserialize, Serialize)]
//! struct GuestData {
//!     pageviews: usize,
//!     first_seen: OffsetDateTime,
//!     last_seen: OffsetDateTime,
//! }
//!
//! impl Default for GuestData {
//!     fn default() -> Self {
//!         Self {
//!             pageviews: 0,
//!             first_seen: OffsetDateTime::now_utc(),
//!             last_seen: OffsetDateTime::now_utc(),
//!         }
//!     }
//! }
//!
//! struct Guest {
//!     session: Session,
//!     guest_data: GuestData,
//! }
//!
//! impl Guest {
//!     const GUEST_DATA_KEY: &'static str = "guest_data";
//!
//!     fn first_seen(&self) -> OffsetDateTime {
//!         self.guest_data.first_seen
//!     }
//!
//!     fn last_seen(&self) -> OffsetDateTime {
//!         self.guest_data.last_seen
//!     }
//!
//!     fn pageviews(&self) -> usize {
//!         self.guest_data.pageviews
//!     }
//!
//!     async fn mark_pageview(&mut self) {
//!         self.guest_data.pageviews += 1;
//!         Self::update_session(&self.session, &self.guest_data).await
//!     }
//!
//!     async fn update_session(session: &Session, guest_data: &GuestData) {
//!         session
//!             .insert(Self::GUEST_DATA_KEY, guest_data.clone())
//!             .await
//!             .unwrap()
//!     }
//! }
//!
//! #[async_trait]
//! impl<S> FromRequestParts<S> for Guest
//! where
//!     S: Send + Sync,
//! {
//!     type Rejection = (StatusCode, &'static str);
//!
//!     async fn from_request_parts(req: &mut Parts, state: &S) -> Result<Self, Self::Rejection> {
//!         let session = Session::from_request_parts(req, state).await?;
//!
//!         let mut guest_data: GuestData = session
//!             .get(Self::GUEST_DATA_KEY)
//!             .await
//!             .unwrap()
//!             .unwrap_or_default();
//!
//!         guest_data.last_seen = OffsetDateTime::now_utc();
//!
//!         Self::update_session(&session, &guest_data).await;
//!
//!         Ok(Self {
//!             session,
//!             guest_data,
//!         })
//!     }
//! }
//! ```
//!
//! Here we can use `Guest` as an extractor in our handler. We'll be able to
//! read values, like the ID as well as update the pageview count with our
//! `mark_pageview` method.
//!
//! A complete example can be found in [`examples/strongly-typed.rs`](https://github.com/maxcountryman/tower-sessions/blob/main/examples/strongly-typed.rs)
//!
//! ## Name-spaced and strongly-typed buckets
//!
//! Our example demonstrates a single extractor, but in a real application we
//! might imagine a set of common extractors, all living in the same session.
//! Each extractor forms a kind of bucketed name-space with a typed structure.
//! Importantly, each is self-contained by its own name-space.
//!
//! For instance, we might also have a site preferences bucket, an analytics
//! bucket, a feature flag bucket and so on. All these together would live in
//! the same session, but would be segmented by their own name-space, avoiding
//! the mixing of domains unnecessarily.[^data-domains]
//!
//! # Layered caching
//!
//! In some cases, the canonical store for a session may benefit from a cache.
//! For example, rather than loading a session from a store on every request,
//! this roundtrip can be mitigated by placing a cache in front of the storage
//! backend. A specialized session store, [`CachingSessionStore`], is provided
//! for exactly this purpose.
//!
//! This store manages a cache and a store. Where the cache acts as a frontend
//! and the store a backend. When a session is loaded, the store first attempts
//! to load the session from the cache, if that fails only then does it try to
//! load from the store. By doing so, read-heavy workloads will incur far fewer
//! roundtrips to the store itself.
//!
//! To illustrate, this is how we might use the
//! `MokaStore` as a frontend cache to a
//! `PostgresStore` backend.
//! ```rust,no_run,ignore
//! # use tower::ServiceBuilder;
//! # use tower_sessions::{CachingSessionStore, SessionManagerLayer};
//! # use tower_sessions_sqlx_store::{sqlx::PgPool, PostgresStore};
//! # use tower_sessions_moka_store::MokaStore;
//! # use time::Duration;
//! # tokio_test::block_on(async {
//! let database_url = std::option_env!("DATABASE_URL").unwrap();
//! let pool = PgPool::connect(database_url).await.unwrap();
//!
//! let postgres_store = PostgresStore::new(pool);
//! postgres_store.migrate().await.unwrap();
//!
//! let moka_store = MokaStore::new(Some(10_000));
//! let caching_store = CachingSessionStore::new(moka_store, postgres_store);
//!
//! let session_service = ServiceBuilder::new()
//!     .layer(SessionManagerLayer::new(caching_store).with_max_age(Duration::days(1)));
//! # })
//! ```
//!
//! While this example uses Moka, any implementor of [`SessionStore`] may be
//! used. For instance, we could use the `RedisStore` instead of Moka.
//!
//! A cache is most helpful with read-heavy workloads, where the cache hit rate
//! will be high. This is because write-heavy workloads will require a roundtrip
//! to the store and therefore benefit less from caching.
//!
//! ## Data races under concurrent conditions
//!
//! Please note that it is **not safe** to access and mutate session state
//! concurrently: this will result in data loss if your mutations are dependent
//! on the state of the session.
//!
//! This is because a session is loaded first from its backing store. Once
//! loaded it's possible for a second request to load the same session, but
//! without the inflight changes the first request may have made.
//!
//! # Implementation
//!
//! Sessions are composed of three pieces:
//!
//! 1. A cookie that holds the session ID as its value,
//! 2. An in-memory hash-map, which underpins the key-value API,
//! 3. A pluggable persistence layer, the session store, where session data is
//!    housed.
//!
//! Together, these pieces form the basis of this crate and allow `tower` and
//! `axum` applications to use a familiar session interface.
//!
//! ## Cookie
//!
//! Sessions manifest to clients as cookies. These cookies have a configurable
//! name and a value that is the session ID. In other words, cookies hold a
//! pointer to the session in the form of an ID. This ID is an i128 generated by
//! the [`rand`](https://docs.rs/rand/latest/rand) crate.
//!
//! ### Secure nature of cookies
//!
//! Session IDs are considered secure if sent over encrypted channels. Note that
//! this assumption is predicated on the secure nature of the [`rand`](https://docs.rs/rand/latest/rand) crate
//! and its ability to generate securely-random values using the ChaCha block
//! cipher with 12 rounds. It's also important to note that session cookies
//! **must never** be sent over a public, insecure channel. Doing so is **not**
//! secure and will lead to compromised sessions!
//!
//! Additionally, sessions may be optionally signed or encrypted by enabling the
//! `signed` and `private` feature flags, respectively. When enabled, the
//! [`with_signed`](SessionManagerLayer::with_signed) and
//! [`with_private`](SessionManagerLayer::with_private) methods become
//! available. These methods take a cryptographic key which allows the session
//! manager to leverage ciphertext as opposed to the default of plaintext. Note
//! that no data is stored in the session ID beyond the session identifier
//! itself and so this measure should be considered primarily effective as a
//! defense in depth tactic.
//!
//! ## Key-value API
//!
//! Sessions manage a `HashMap<String, serde_json::Value>` but importantly are
//! transparently persisted to an arbitrary storage backend. Effectively,
//! `HashMap` is an intermediary, in-memory representation. By using a map-like
//! structure, we're able to present a familiar key-value interface for managing
//! sessions. This allows us to store and retrieve native Rust types, so long as
//! our type is `impl Serialize` and can be represented as JSON.[^json]
//!
//! Internally, this hash map state is protected by a lock in the form of
//! `Mutex`. This allows us to safely share mutable state across thread
//! boundaries. Note that this lock is only acquired when we read from or write
//! to this inner session state and not used when the session is provided to the
//! request. This means that lock contention is minimized for most use
//! cases.[^lock-contention]
//!
//! ## Session store
//!
//! Sessions are serialized to arbitrary storage backends via a session record
//! intermediary. Implementations of `SessionStore` take a record and persist
//! it such that it can later be loaded via the session ID.
//!
//! Three components are needed for storing a session:
//!
//! 1. The session ID.
//! 2. The session expiry.
//! 3. The session data itself.
//!
//! Together, these compose the session record and are enough to both encode and
//! decode a session from any backend.
//!
//! ## Session life cycle
//!
//! Cookies hold a pointer to the session, rather than the session's data, and
//! because of this, the `tower` middleware is focused on managing the process
//! of initializing a session which can later be used in code to transparently
//! interact with the store.
//!
//! A session is initialized by looking for a cookie that matches the configured
//! session cookie name. If no such cookie is found or a cookie is found but is
//! malformed, an empty session is initialized.
//!  
//! Modified sessions will invoke the session's [`save`](Session::save) method
//! as well as append to the `Set-Cookie` header of the response.
//!
//! Empty sessions are considered deleted and will set a removal cookie
//! on the response but are not removed from the store directly.
//!
//! Sessions also carry with them a configurable expiry and will be removed in
//! accordance with this.
//!
//! Notably, the session life cycle minimizes overhead with the store. All
//! session store methods are deferred until the point [`Session`] is used in
//! code and more specifically one of its methods requiring the store is called.
//!
//! [^json]: Using JSON allows us to translate arbitrary types to virtually
//! any backend and gives us a nice interface with which to interact with the
//! session.
//!
//! [^lock-contention]: We might consider replacing `Mutex` with `RwLock` if
//! this proves to be a better fit in practice. Another alternative might be
//! `dashmap` or a different approach entirely. Future iterations should be
//! based on real-world use cases.
//!
//! [^data-domains]: This is particularly useful when we may have data
//! domains that only belong with ! users in certain states: we can pull these
//! into our handlers where we need a particular domain. In this way, we
//! minimize data pollution via self-contained domains in the form of buckets.
#![warn(
    clippy::all,
    nonstandard_style,
    future_incompatible,
    missing_debug_implementations
)]
#![deny(missing_docs)]
#![forbid(unsafe_code)]
#![cfg_attr(docsrs, feature(doc_cfg))]

pub use tower_cookies::cookie;
pub use tower_sessions_core::{session, session_store};
#[doc(inline)]
pub use tower_sessions_core::{
    session::{Expiry, Session},
    session_store::{CachingSessionStore, ExpiredDeletion, SessionStore},
};
#[cfg(feature = "memory-store")]
#[cfg_attr(docsrs, doc(cfg(feature = "memory-store")))]
#[doc(inline)]
pub use tower_sessions_memory_store::MemoryStore;

pub use crate::service::{SessionManager, SessionManagerLayer};

pub mod service;