1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
//! # Overview
//!
//! This crate provides sessions, key-value pairs associated with a site
//! visitor, as a [`tower`](https://docs.rs/tower/latest/tower/) middleware.
//!
//! It offers:
//!
//! - **Pluggable Storage Backends:** Bring your own backend simply by
//! implementing the [`SessionStore`] trait, fully decoupling sessions from
//! their storage.
//! - **Minimal Overhead**: Sessions are only loaded from their backing stores
//! when they're actually used and only in e.g. the handler they're used in.
//! That means this middleware can be installed at any point in your route
//! graph with minimal overhead.
//! - **An `axum` Extractor for [`Session`]:** Applications built with `axum`
//! can use `Session` as an extractor directly in their handlers. This makes
//! using sessions as easy as including `Session` in your handler.
//! - **Simple Key-Value Interface:** Sessions offer a key-value interface that
//! supports native Rust types. So long as these types are `Serialize` and can
//! be converted to JSON, it's straightforward to insert, get, and remove any
//! value.
//! - **Strongly-Typed Sessions:** Strong typing guarantees are easy to layer on
//! top of this foundational key-value interface.
//!
//! This crate's session implementation is inspired by the [Django sessions middleware](https://docs.djangoproject.com/en/4.2/topics/http/sessions) and it provides a transliteration of those semantics.
//! ### Session stores
//!
//! Session data persistence is managed by user-provided types that implement
//! [`SessionStore`]. What this means is that applications can and should
//! implement session stores to fit their specific needs.
//!
//! That said, a number of session store implmentations already exist and may be
//! useful starting points.
//!
//! | Crate | Persistent | Description |
//! | ---------------------------------------------------------------------------------------------------------------- | ---------- | ------------------------------------------ |
//! | [`tower-sessions-dynamodb-store`](https://github.com/necrobious/tower-sessions-dynamodb-store) | Yes | DynamoDB session store |
//! | [`tower-sessions-firestore-store`](https://github.com/AtTheTavern/tower-sessions-firestore-store) | Yes | Firestore session store |
//! | [`tower-sessions-libsql-store`](https://github.com/daybowbow-dev/tower-sessions-libsql-store) | Yes | libSQL session store |
//! | [`tower-sessions-mongodb-store`](https://github.com/maxcountryman/tower-sessions-stores/tree/main/mongodb-store) | Yes | MongoDB session store |
//! | [`tower-sessions-moka-store`](https://github.com/maxcountryman/tower-sessions-stores/tree/main/moka-store) | No | Moka session store |
//! | [`tower-sessions-redis-store`](https://github.com/maxcountryman/tower-sessions-stores/tree/main/redis-store) | Yes | Redis via `fred` session store |
//! | [`tower-sessions-rusqlite-store`](https://github.com/patte/tower-sessions-rusqlite-store) | Yes | Rusqlite session store |
//! | [`tower-sessions-sled-store`](https://github.com/Zatzou/tower-sessions-sled-store) | Yes | Sled session store |
//! | [`tower-sessions-sqlx-store`](https://github.com/maxcountryman/tower-sessions-stores/tree/main/sqlx-store) | Yes | SQLite, Postgres, and MySQL session stores |
//! | [`tower-sessions-surrealdb-store`](https://github.com/rynoV/tower-sessions-surrealdb-store) | Yes | SurrealDB session store |
//!
//! Have a store to add? Please open a PR adding it.
//!
//! ### User session management
//!
//! To facilitate authentication and authorization, we've built [`axum-login`](https://github.com/maxcountryman/axum-login) on top of this crate. Please check it out if you're looking for a generalized auth solution.
//!
//! # Usage with an `axum` application
//!
//! A common use-case for sessions is when building HTTP servers. Using `axum`,
//! it's straightforward to leverage sessions.
//!
//! ```rust,no_run
//! use std::net::SocketAddr;
//!
//! use axum::{response::IntoResponse, routing::get, Router};
//! use serde::{Deserialize, Serialize};
//! use time::Duration;
//! use tower_sessions::{Expiry, MemoryStore, Session, SessionManagerLayer};
//!
//! const COUNTER_KEY: &str = "counter";
//!
//! #[derive(Default, Deserialize, Serialize)]
//! struct Counter(usize);
//!
//! async fn handler(session: Session) -> impl IntoResponse {
//! let counter: Counter = session.get(COUNTER_KEY).await.unwrap().unwrap_or_default();
//! session.insert(COUNTER_KEY, counter.0 + 1).await.unwrap();
//! format!("Current count: {}", counter.0)
//! }
//!
//! #[tokio::main]
//! async fn main() {
//! let session_store = MemoryStore::default();
//! let session_layer = SessionManagerLayer::new(session_store)
//! .with_secure(false)
//! .with_expiry(Expiry::OnInactivity(Duration::seconds(10)));
//!
//! let app = Router::new().route("/", get(handler)).layer(session_layer);
//!
//! let addr = SocketAddr::from(([127, 0, 0, 1], 3000));
//! let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
//! axum::serve(listener, app.into_make_service())
//! .await
//! .unwrap();
//! }
//! ```
//!
//! ## Session expiry management
//!
//! In cases where you are utilizing stores that lack automatic session expiry
//! functionality, such as SQLx or MongoDB stores, it becomes essential to
//! periodically clean up stale sessions. For instance, both SQLx and MongoDB
//! stores offer
//! `continuously_delete_expired`
//! which is designed to be executed as a recurring task. This process ensures
//! the removal of expired sessions, maintaining your application's data
//! integrity and performance.
//! ```rust,no_run,ignore
//! # use tower_sessions::{session_store::ExpiredDeletion};
//! # use tower_sessions_sqlx_store::{sqlx::SqlitePool, SqliteStore};
//! # tokio_test::block_on(async {
//! let pool = SqlitePool::connect("sqlite::memory:").await.unwrap();
//! let session_store = SqliteStore::new(pool);
//! let deletion_task = tokio::task::spawn(
//! session_store
//! .clone()
//! .continuously_delete_expired(tokio::time::Duration::from_secs(60)),
//! );
//! deletion_task.await.unwrap().unwrap();
//! # });
//! ```
//!
//! Note that by default or when using browser session expiration, sessions are
//! considered expired after two weeks.
//!
//! # Extractor pattern
//!
//! When using `axum`, the [`Session`] will already function as an extractor.
//! It's possible to build further on this to create extractors of custom types.
//! ```rust,no_run
//! # use async_trait::async_trait;
//! # use axum::extract::FromRequestParts;
//! # use http::{request::Parts, StatusCode};
//! # use serde::{Deserialize, Serialize};
//! # use tower_sessions::{SessionStore, Session, MemoryStore};
//! const COUNTER_KEY: &str = "counter";
//!
//! #[derive(Default, Deserialize, Serialize)]
//! struct Counter(usize);
//!
//! #[async_trait]
//! impl<S> FromRequestParts<S> for Counter
//! where
//! S: Send + Sync,
//! {
//! type Rejection = (http::StatusCode, &'static str);
//!
//! async fn from_request_parts(req: &mut Parts, state: &S) -> Result<Self, Self::Rejection> {
//! let session = Session::from_request_parts(req, state).await?;
//! let counter: Counter = session.get(COUNTER_KEY).await.unwrap().unwrap_or_default();
//! session.insert(COUNTER_KEY, counter.0 + 1).await.unwrap();
//!
//! Ok(counter)
//! }
//! }
//! ```
//!
//! Now in our handler, we can use `Counter` directly to read its fields.
//!
//! A complete example can be found in [`examples/counter-extractor.rs`](https://github.com/maxcountryman/tower-sessions/blob/main/examples/counter-extractor.rs).
//!
//! # Strongly-typed sessions
//!
//! The extractor pattern can be extended further to provide strong typing
//! guarantees over the key-value substrate. Whereas our previous extractor
//! example was effectively read-only. This pattern enables mutability of the
//! underlying structure while also leveraging the full power of the type
//! system.
//! ```rust,no_run
//! # use async_trait::async_trait;
//! # use axum::extract::FromRequestParts;
//! # use http::{request::Parts, StatusCode};
//! # use serde::{Deserialize, Serialize};
//! # use time::OffsetDateTime;
//! # use tower_sessions::{SessionStore, Session};
//! #[derive(Clone, Deserialize, Serialize)]
//! struct GuestData {
//! pageviews: usize,
//! first_seen: OffsetDateTime,
//! last_seen: OffsetDateTime,
//! }
//!
//! impl Default for GuestData {
//! fn default() -> Self {
//! Self {
//! pageviews: 0,
//! first_seen: OffsetDateTime::now_utc(),
//! last_seen: OffsetDateTime::now_utc(),
//! }
//! }
//! }
//!
//! struct Guest {
//! session: Session,
//! guest_data: GuestData,
//! }
//!
//! impl Guest {
//! const GUEST_DATA_KEY: &'static str = "guest_data";
//!
//! fn first_seen(&self) -> OffsetDateTime {
//! self.guest_data.first_seen
//! }
//!
//! fn last_seen(&self) -> OffsetDateTime {
//! self.guest_data.last_seen
//! }
//!
//! fn pageviews(&self) -> usize {
//! self.guest_data.pageviews
//! }
//!
//! async fn mark_pageview(&mut self) {
//! self.guest_data.pageviews += 1;
//! Self::update_session(&self.session, &self.guest_data).await
//! }
//!
//! async fn update_session(session: &Session, guest_data: &GuestData) {
//! session
//! .insert(Self::GUEST_DATA_KEY, guest_data.clone())
//! .await
//! .unwrap()
//! }
//! }
//!
//! #[async_trait]
//! impl<S> FromRequestParts<S> for Guest
//! where
//! S: Send + Sync,
//! {
//! type Rejection = (StatusCode, &'static str);
//!
//! async fn from_request_parts(req: &mut Parts, state: &S) -> Result<Self, Self::Rejection> {
//! let session = Session::from_request_parts(req, state).await?;
//!
//! let mut guest_data: GuestData = session
//! .get(Self::GUEST_DATA_KEY)
//! .await
//! .unwrap()
//! .unwrap_or_default();
//!
//! guest_data.last_seen = OffsetDateTime::now_utc();
//!
//! Self::update_session(&session, &guest_data).await;
//!
//! Ok(Self {
//! session,
//! guest_data,
//! })
//! }
//! }
//! ```
//!
//! Here we can use `Guest` as an extractor in our handler. We'll be able to
//! read values, like the ID as well as update the pageview count with our
//! `mark_pageview` method.
//!
//! A complete example can be found in [`examples/strongly-typed.rs`](https://github.com/maxcountryman/tower-sessions/blob/main/examples/strongly-typed.rs)
//!
//! ## Name-spaced and strongly-typed buckets
//!
//! Our example demonstrates a single extractor, but in a real application we
//! might imagine a set of common extractors, all living in the same session.
//! Each extractor forms a kind of bucketed name-space with a typed structure.
//! Importantly, each is self-contained by its own name-space.
//!
//! For instance, we might also have a site preferences bucket, an analytics
//! bucket, a feature flag bucket and so on. All these together would live in
//! the same session, but would be segmented by their own name-space, avoiding
//! the mixing of domains unnecessarily.[^data-domains]
//!
//! # Layered caching
//!
//! In some cases, the canonical store for a session may benefit from a cache.
//! For example, rather than loading a session from a store on every request,
//! this roundtrip can be mitigated by placing a cache in front of the storage
//! backend. A specialized session store, [`CachingSessionStore`], is provided
//! for exactly this purpose.
//!
//! This store manages a cache and a store. Where the cache acts as a frontend
//! and the store a backend. When a session is loaded, the store first attempts
//! to load the session from the cache, if that fails only then does it try to
//! load from the store. By doing so, read-heavy workloads will incur far fewer
//! roundtrips to the store itself.
//!
//! To illustrate, this is how we might use the
//! `MokaStore` as a frontend cache to a
//! `PostgresStore` backend.
//! ```rust,no_run,ignore
//! # use tower::ServiceBuilder;
//! # use tower_sessions::{CachingSessionStore, SessionManagerLayer};
//! # use tower_sessions_sqlx_store::{sqlx::PgPool, PostgresStore};
//! # use tower_sessions_moka_store::MokaStore;
//! # use time::Duration;
//! # tokio_test::block_on(async {
//! let database_url = std::option_env!("DATABASE_URL").unwrap();
//! let pool = PgPool::connect(database_url).await.unwrap();
//!
//! let postgres_store = PostgresStore::new(pool);
//! postgres_store.migrate().await.unwrap();
//!
//! let moka_store = MokaStore::new(Some(10_000));
//! let caching_store = CachingSessionStore::new(moka_store, postgres_store);
//!
//! let session_service = ServiceBuilder::new()
//! .layer(SessionManagerLayer::new(caching_store).with_max_age(Duration::days(1)));
//! # })
//! ```
//!
//! While this example uses Moka, any implementor of [`SessionStore`] may be
//! used. For instance, we could use the `RedisStore` instead of Moka.
//!
//! A cache is most helpful with read-heavy workloads, where the cache hit rate
//! will be high. This is because write-heavy workloads will require a roundtrip
//! to the store and therefore benefit less from caching.
//!
//! ## Data races under concurrent conditions
//!
//! Please note that it is **not safe** to access and mutate session state
//! concurrently: this will result in data loss if your mutations are dependent
//! on the state of the session.
//!
//! This is because a session is loaded first from its backing store. Once
//! loaded it's possible for a second request to load the same session, but
//! without the inflight changes the first request may have made.
//!
//! # Implementation
//!
//! Sessions are composed of three pieces:
//!
//! 1. A cookie that holds the session ID as its value,
//! 2. An in-memory hash-map, which underpins the key-value API,
//! 3. A pluggable persistence layer, the session store, where session data is
//! housed.
//!
//! Together, these pieces form the basis of this crate and allow `tower` and
//! `axum` applications to use a familiar session interface.
//!
//! ## Cookie
//!
//! Sessions manifest to clients as cookies. These cookies have a configurable
//! name and a value that is the session ID. In other words, cookies hold a
//! pointer to the session in the form of an ID. This ID is an i128 generated by
//! the [`rand`](https://docs.rs/rand/latest/rand) crate.
//!
//! ### Secure nature of cookies
//!
//! Session IDs are considered secure if sent over encrypted channels. Note that
//! this assumption is predicated on the secure nature of the [`rand`](https://docs.rs/rand/latest/rand) crate
//! and its ability to generate securely-random values using the ChaCha block
//! cipher with 12 rounds. It's also important to note that session cookies
//! **must never** be sent over a public, insecure channel. Doing so is **not**
//! secure and will lead to compromised sessions!
//!
//! Additionally, sessions may be optionally signed or encrypted by enabling the
//! `signed` and `private` feature flags, respectively. When enabled, the
//! [`with_signed`](SessionManagerLayer::with_signed) and
//! [`with_private`](SessionManagerLayer::with_private) methods become
//! available. These methods take a cryptographic key which allows the session
//! manager to leverage ciphertext as opposed to the default of plaintext. Note
//! that no data is stored in the session ID beyond the session identifier
//! itself and so this measure should be considered primarily effective as a
//! defense in depth tactic.
//!
//! ## Key-value API
//!
//! Sessions manage a `HashMap<String, serde_json::Value>` but importantly are
//! transparently persisted to an arbitrary storage backend. Effectively,
//! `HashMap` is an intermediary, in-memory representation. By using a map-like
//! structure, we're able to present a familiar key-value interface for managing
//! sessions. This allows us to store and retrieve native Rust types, so long as
//! our type is `impl Serialize` and can be represented as JSON.[^json]
//!
//! Internally, this hash map state is protected by a lock in the form of
//! `Mutex`. This allows us to safely share mutable state across thread
//! boundaries. Note that this lock is only acquired when we read from or write
//! to this inner session state and not used when the session is provided to the
//! request. This means that lock contention is minimized for most use
//! cases.[^lock-contention]
//!
//! ## Session store
//!
//! Sessions are serialized to arbitrary storage backends via a session record
//! intermediary. Implementations of `SessionStore` take a record and persist
//! it such that it can later be loaded via the session ID.
//!
//! Three components are needed for storing a session:
//!
//! 1. The session ID.
//! 2. The session expiry.
//! 3. The session data itself.
//!
//! Together, these compose the session record and are enough to both encode and
//! decode a session from any backend.
//!
//! ## Session life cycle
//!
//! Cookies hold a pointer to the session, rather than the session's data, and
//! because of this, the `tower` middleware is focused on managing the process
//! of initializing a session which can later be used in code to transparently
//! interact with the store.
//!
//! A session is initialized by looking for a cookie that matches the configured
//! session cookie name. If no such cookie is found or a cookie is found but is
//! malformed, an empty session is initialized.
//!
//! Modified sessions will invoke the session's [`save`](Session::save) method
//! as well as append to the `Set-Cookie` header of the response.
//!
//! Empty sessions are considered deleted and will set a removal cookie
//! on the response but are not removed from the store directly.
//!
//! Sessions also carry with them a configurable expiry and will be removed in
//! accordance with this.
//!
//! Notably, the session life cycle minimizes overhead with the store. All
//! session store methods are deferred until the point [`Session`] is used in
//! code and more specifically one of its methods requiring the store is called.
//!
//! [^json]: Using JSON allows us to translate arbitrary types to virtually
//! any backend and gives us a nice interface with which to interact with the
//! session.
//!
//! [^lock-contention]: We might consider replacing `Mutex` with `RwLock` if
//! this proves to be a better fit in practice. Another alternative might be
//! `dashmap` or a different approach entirely. Future iterations should be
//! based on real-world use cases.
//!
//! [^data-domains]: This is particularly useful when we may have data
//! domains that only belong with ! users in certain states: we can pull these
//! into our handlers where we need a particular domain. In this way, we
//! minimize data pollution via self-contained domains in the form of buckets.
#![warn(
clippy::all,
nonstandard_style,
future_incompatible,
missing_debug_implementations
)]
#![deny(missing_docs)]
#![forbid(unsafe_code)]
#![cfg_attr(docsrs, feature(doc_cfg))]
pub use tower_cookies::cookie;
pub use tower_sessions_core::{session, session_store};
#[doc(inline)]
pub use tower_sessions_core::{
session::{Expiry, Session},
session_store::{CachingSessionStore, ExpiredDeletion, SessionStore},
};
#[cfg(feature = "memory-store")]
#[cfg_attr(docsrs, doc(cfg(feature = "memory-store")))]
#[doc(inline)]
pub use tower_sessions_memory_store::MemoryStore;
pub use crate::service::{SessionManager, SessionManagerLayer};
pub mod service;