1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
//! An arbitrary store which houses the session data.

use std::fmt::Debug;

use async_trait::async_trait;

use crate::session::{Id, Record};

/// Stores must map any errors that might occur during their use to this type.
#[derive(thiserror::Error, Debug)]
pub enum Error {
    #[error("Encoding failed with: {0}")]
    Encode(String),

    #[error("Decoding failed with: {0}")]
    Decode(String),

    #[error("{0}")]
    Backend(String),
}

pub type Result<T> = std::result::Result<T, Error>;

/// An arbitrary store which houses the session data.
///
/// # Implementing your own store
///
/// This crate is designed such that any arbirary session storage backend can be
/// supported simply by implemeting the `SessionStore` trait. While a set of
/// common stores are provided, should those not meet your needs or otherwise we
/// lacking, it is encouraged to implement your own store.
///
/// For example, we might construct a session store for testing purposes that
/// wraps `HashMap`. To do so, we can write a struct that houses this hash map
/// and then implement `SessionStore`.
///
/// ```rust
/// use std::{collections::HashMap, sync::Arc};
///
/// use async_trait::async_trait;
/// use parking_lot::Mutex;
/// use tower_sessions::{
///     session::{Id, Record},
///     session_store, Session, SessionStore,
/// };
///
/// #[derive(Debug, Clone)]
/// pub struct TestingStore(Arc<Mutex<HashMap<Id, Record>>>);
///
/// #[async_trait]
/// impl SessionStore for TestingStore {
///     async fn save(&self, record: &Record) -> session_store::Result<()> {
///         self.0.lock().insert(record.id, record.clone());
///         Ok(())
///     }
///
///     async fn load(&self, session_id: &Id) -> session_store::Result<Option<Record>> {
///         Ok(self.0.lock().get(session_id).cloned())
///     }
///
///     async fn delete(&self, session_id: &Id) -> session_store::Result<()> {
///         self.0.lock().remove(session_id);
///         Ok(())
///     }
/// }
/// ```
#[async_trait]
pub trait SessionStore: Debug + Send + Sync + 'static {
    /// A method for saving a session in a store.
    async fn save(&self, session_record: &Record) -> Result<()>;

    /// A method for loading a session from a store.
    async fn load(&self, session_id: &Id) -> Result<Option<Record>>;

    /// A method for deleting a session from a store.
    async fn delete(&self, session_id: &Id) -> Result<()>;
}

/// A session store for layered caching.
///
/// Contains both a cache, which acts as a frontend, and a store which acts as a
/// backend. Both cache and store implement `SessionStore`.
///
/// By using a cache, the cost of reads can be greatly reduced as once cached,
/// reads need only interact with the frontend, forgoing the cost of retrieving
/// the session record from the backend.
///
/// # Examples
///
/// ```rust,ignore
/// # tokio_test::block_on(async {
/// use tower_sessions::CachingSessionStore;
/// use tower_sessions_moka_store::MokaStore;
/// use tower_sessions_sqlx_store::{SqlitePool, SqliteStore};
/// let pool = SqlitePool::connect("sqlite::memory:").await.unwrap();
/// let sqlite_store = SqliteStore::new(pool);
/// let moka_store = MokaStore::new(Some(2_000));
/// let caching_store = CachingSessionStore::new(moka_store, sqlite_store);
/// # })
/// ```
#[derive(Debug, Clone)]
pub struct CachingSessionStore<Cache: SessionStore, Store: SessionStore> {
    cache: Cache,
    store: Store,
}

impl<Cache: SessionStore, Store: SessionStore> CachingSessionStore<Cache, Store> {
    /// Create a new `CachingSessionStore`.
    pub fn new(cache: Cache, store: Store) -> Self {
        Self { cache, store }
    }
}

#[async_trait]
impl<Cache, Store> SessionStore for CachingSessionStore<Cache, Store>
where
    Cache: SessionStore,
    Store: SessionStore,
{
    async fn save(&self, record: &Record) -> Result<()> {
        let cache_save_fut = self.store.save(record);
        let store_save_fut = self.cache.save(record);

        futures::try_join!(cache_save_fut, store_save_fut)?;

        Ok(())
    }

    async fn load(&self, session_id: &Id) -> Result<Option<Record>> {
        match self.cache.load(session_id).await {
            // We found a session in the cache, so let's use it.
            Ok(Some(session_record)) => Ok(Some(session_record)),

            // We didn't find a session in the cache, so we'll try loading from the backend.
            //
            // When we find a session in the backend, we'll hydrate our cache with it.
            Ok(None) => {
                let session_record = self.store.load(session_id).await?;

                if let Some(ref session_record) = session_record {
                    self.cache.save(session_record).await?;
                }

                Ok(session_record)
            }

            // Some error occurred with our cache so we'll bubble this up.
            Err(err) => Err(err),
        }
    }

    async fn delete(&self, session_id: &Id) -> Result<()> {
        let store_delete_fut = self.store.delete(session_id);
        let cache_delete_fut = self.cache.delete(session_id);

        futures::try_join!(store_delete_fut, cache_delete_fut)?;

        Ok(())
    }
}

/// A trait providing a deletion method for expired methods and optionally a
/// method that runs indefinitely, deleting expired sessions.
#[async_trait]
pub trait ExpiredDeletion: SessionStore
where
    Self: Sized,
{
    /// A method for deleting expired sessions from the store.
    async fn delete_expired(&self) -> Result<()>;

    /// This function will keep running indefinitely, deleting expired rows and
    /// then waiting for the specified period before deleting again.
    ///
    /// Generally this will be used as a task, for example via
    /// `tokio::task::spawn`.
    ///
    /// # Errors
    ///
    /// This function returns a `Result` that contains an error of type
    /// `sqlx::Error` if the deletion operation fails.
    ///
    /// # Examples
    ///
    /// ```rust,no_run,ignore
    /// use tower_sessions::session_store::ExpiredDeletion;
    /// use tower_sessions_sqlx_store::{sqlx::SqlitePool, SqliteStore};
    ///
    /// # {
    /// # tokio_test::block_on(async {
    /// let pool = SqlitePool::connect("sqlite::memory:").await.unwrap();
    /// let session_store = SqliteStore::new(pool);
    ///
    /// tokio::task::spawn(
    ///     session_store
    ///         .clone()
    ///         .continuously_delete_expired(tokio::time::Duration::from_secs(60)),
    /// );
    /// # })
    /// ```
    #[cfg(feature = "deletion-task")]
    #[cfg_attr(docsrs, doc(cfg(feature = "deletion-task")))]
    async fn continuously_delete_expired(self, period: tokio::time::Duration) -> Result<()> {
        let mut interval = tokio::time::interval(period);
        loop {
            self.delete_expired().await?;
            interval.tick().await;
        }
    }
}