1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
//! Second-order cone program

use super::mat::{Mat, FP};
use super::pdipm::PDIPM;

use std::io::Write;

/// Second-order cone program
/// 
/// <script src='https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-MML-AM_CHTML' async></script>
/// 
/// The problem is
/// \\[
/// \\begin{array}{ll}
/// {\\rm minimize} & f^T x \\\\
/// {\\rm subject \\ to} & \\| G_i x + h_i \\|_2 \\le c_i^T x + d_i \\quad (i = 0, \\ldots, m - 1) \\\\
/// & A x = b,
/// \\end{array}
/// \\]
/// where
/// - variables \\( x \\in {\\bf R}^n \\)
/// - \\( f \\in {\\bf R}^n \\)
/// - \\( G_i \\in {\\bf R}^{n_i \\times n} \\), \\( h_i \\in {\\bf R}^{n_i} \\), \\( c_i \\in {\\bf R}^n \\), \\( d_i \\in {\\bf R} \\)
/// - \\( A \\in {\\bf R}^{p \\times n} \\), \\( b \\in {\\bf R}^p \\).
/// 
/// Internally an **approximately equivalent** problem is formed and
/// an auxiliary variable \\( s \\in {\\bf R}^m \\) is introduced for the infeasible start method as follows:
/// \\[
/// \\begin{array}{lll}
/// {\\rm minimize}\_{x,s} & f^T x \\\\
/// {\\rm subject \\ to} & {\\| G_i x + h_i \\|\_2^2 \\over s_i} \\le s_i & (i = 0, \\ldots, m - 1) \\\\
/// & s_i \\ge \\epsilon_{\\rm bd} & (i = 0, \\ldots, m - 1) \\\\
/// & c_i^T x + d_i = s_i & (i = 0, \\ldots, m - 1) \\\\
/// & A x = b,
/// \\end{array}
/// \\]
/// where \\( \\epsilon_{\\rm bd} > 0 \\) indicates the extent of approximation that excludes \\( c_i^T x + d_i = 0 \\) boundary.
pub trait SOCP {
    fn solve_socp<L>(&self, log: L,
                     vec_f: &Mat,
                     mat_g: &[Mat], vec_h: &[Mat], vec_c: &[Mat], scl_d: &[FP],
                     mat_a: &Mat, vec_b: &Mat)
                     -> Result<Mat, &'static str>
    where L: Write;
}

fn check_param(vec_f: &Mat,
               mat_g: &[Mat], vec_h: &[Mat], vec_c: &[Mat], scl_d: &[FP],
               mat_a: &Mat, vec_b: &Mat)
               -> Result<(usize, usize, usize), &'static str>
{
        let (n, _) = vec_f.size();
        let m = mat_g.len();
        let (p, _) = mat_a.size();

        if n == 0 {return Err("vec_f: 0 rows");}
        // m = 0 means NO inequality constraints
        // p = 0 means NO equality constraints

        if vec_h.len() != m {return Err("vec_h: length mismatch");}
        if vec_c.len() != m {return Err("vec_c: length mismatch");}
        if scl_d.len() != m {return Err("scl_d: length mismatch");}

        for i in 0 .. m {
            let (ni, _) = mat_g[i].size();
            if mat_g[i].size() != (ni, n) {return Err("mat_g[_]: size mismatch");}
            if vec_h[i].size() != (ni, 1) {return Err("vec_h[_]: size mismatch");}
            if vec_c[i].size() != (n, 1) {return Err("vec_c[_]: size mismatch");}
        }

        if mat_a.size() != (p, n) {return Err("mat_a: size mismatch");}
        if vec_b.size() != (p, 1) {return Err("vec_b: size mismatch");}

        Ok((n, m, p))
}

impl SOCP for PDIPM
{
    /// Runs the solver with given parameters.
    /// 
    /// Returns `Ok` with optimal \\(x\\) or `Err` with message string.
    /// * `log` outputs solver progress.
    /// * `vec_f` is \\(f\\).
    /// * `mat_g` is \\(G_0, \\ldots, G_{m-1}\\).
    /// * `vec_h` is \\(h_0, \\ldots, h_{m-1}\\).
    /// * `vec_c` is \\(c_0, \\ldots, c_{m-1}\\).
    /// * `scl_d` is \\(d_0, \\ldots, d_{m-1}\\).
    /// * `mat_a` is \\(A\\).
    /// * `vec_b` is \\(b\\).
    fn solve_socp<L>(&self, log: L,
                     vec_f: &Mat,
                     mat_g: &[Mat], vec_h: &[Mat], vec_c: &[Mat], scl_d: &[FP],
                     mat_a: &Mat, vec_b: &Mat)
                     -> Result<Mat, &'static str>
    where L: Write
    {
        // ----- parameter check

        let (n, m, p) = check_param(vec_f, mat_g, vec_h, vec_c, scl_d, mat_a, vec_b)?;

        let eps_div0 = self.eps;
        let eps_bd = self.eps;

        // ----- start to solve

        let rslt = self.solve(n + m, m + m, p + m, // '+ m' is for slack variables
            log,
            |_, df_o| {
                df_o.rows_mut(0 .. n).assign(&vec_f);
                // for slack variables
                df_o.rows_mut(n .. n + m).assign_all(0.);
            },
            |_, ddf_o| {
                ddf_o.assign_all(0.);
            },
            |x, f_i| {
                let xn = x.rows(0 .. n);

                for r in 0 .. m {
                    let xnr = x[(n + r, 0)];

                    let inv_s = if xnr.abs() > eps_div0 {
                        1. / xnr
                    }
                    else {
                        // guard from div by zero
                        1. / eps_div0
                    };

                    let tmp = &mat_g[r] * &xn + &vec_h[r];
                    f_i[(r, 0)] = tmp.norm_p2sq() * inv_s - xnr;

                    // for slack variables
                    f_i[(r + m, 0)] = eps_bd - xnr;
                }
            },
            |x, df_i| {
                let xn = x.rows(0 .. n);

                df_i.assign_all(0.);

                for r in 0 .. m {
                    let xnr = x[(n + r, 0)];

                    let inv_s = if xnr.abs() > eps_div0 {
                        1. / xnr
                    }
                    else {
                        // guard from div by zero
                        1. / eps_div0
                    };

                    let tmp1 = &mat_g[r] * &xn + &vec_h[r];
                    let tmp1_norm_p2sq = tmp1.norm_p2sq();
                    let tmp2 = 2. * inv_s * mat_g[r].t() * tmp1;
                    df_i.slice_mut(r ..= r, 0 .. n).assign(&tmp2.t());

                    // for slack variables
                    df_i[(r, n + r)] = -inv_s * inv_s * tmp1_norm_p2sq - 1.;

                    // for slack variables
                    df_i[(r + m, n + r)] = -1.;
                }
            },
            |x, ddf_i, i| {
                ddf_i.assign_all(0.); // for slack variables

                if i < m {
                    let xn = x.rows(0 .. n);
                    let xni = x[(n + i, 0)];

                    let inv_s =  if xni.abs() > eps_div0 {
                        1. / xni
                    }
                    else {
                        // guard from div by zero
                        1. / eps_div0
                    };

                    ddf_i.slice_mut(0 .. n, 0 .. n).assign(&(
                        2. * inv_s * mat_g[i].t() * &mat_g[i]
                    ));

                    let tmp1 = &mat_g[i] * xn + &vec_h[i];
                    let tmp1_norm_p2sq = tmp1.norm_p2sq();
                    let tmp2 = -2. * inv_s * inv_s * mat_g[i].t() * tmp1;

                    // for slack variables
                    ddf_i.slice_mut(0 .. n, n + i ..= n + i).assign(&tmp2);

                    // for slack variables
                    ddf_i.slice_mut(n + i ..= n + i, 0 .. n).assign(&tmp2.t());

                    // for slack variables
                    ddf_i[(n + i, n + i)] = 2. * inv_s * inv_s * inv_s * tmp1_norm_p2sq;
                }
            },
            |a, b| {
                a.slice_mut(0 .. p, 0 .. n).assign(mat_a);
                b.rows_mut(0 .. p).assign(vec_b);

                // for a slack variable
                for r in 0 .. m {
                    a.slice_mut(p + r ..= p + r, 0 .. n).assign(&vec_c[r].t());
                    a[(p + r, n + r)] = -1.;
                    b[(p + r, 0)] = -scl_d[r];
                }
            },
            |mut x| {
                // slack variables
                for i in 0 .. m {
                    let s = vec_h[i].norm_p2() + eps_bd;

                    let mut margin = self.margin;
                    let mut s_inital = s + margin;
                    while s_inital <= s {
                        margin *= 2.;
                        s_inital = s + margin;
                    }
                    x[(n + i, 0)] = s_inital;
                }
            }
        );

        match rslt {
            Ok(y) => Ok(y.rows(0 .. n).clone_sz()),
            Err(s) => Err(s)
        }
    }
}