Expand description
Neural Network module - PyTorch-compatible neural network layers and containers
This module provides a modular structure for neural network components:
module- Base PyModule class and core functionalitylinear- Linear/Dense layerscontainer- Sequential, ModuleList, and other containersactivation- Activation functionsloss- Loss functionsconv- Convolutional layers (Conv1d, Conv2d)normalization- Normalization layers (BatchNorm, LayerNorm)dropout- Dropout and regularization layerspooling- Pooling layers (MaxPool, AvgPool, AdaptivePool)
Re-exports§
pub use container::PyModuleList;pub use container::PySequential;pub use conv::PyConv1d;pub use conv::PyConv2d;pub use dropout::PyAlphaDropout;pub use dropout::PyDropout;pub use dropout::PyDropout2d;pub use dropout::PyDropout3d;pub use linear::PyLinear;pub use module::PyModule as PyNNModule;pub use normalization::PyBatchNorm1d;pub use normalization::PyBatchNorm2d;pub use normalization::PyLayerNorm;pub use pooling::PyAdaptiveAvgPool2d;pub use pooling::PyAdaptiveMaxPool2d;pub use pooling::PyAvgPool2d;pub use pooling::PyMaxPool2d;
Modules§
- activation
- Activation functions for neural networks
- container
- Neural network containers - Sequential, ModuleList, etc.
- conv
- Convolutional neural network layers
- dropout
- Dropout and regularization layers
- linear
- Linear (fully connected) neural network layer
- loss
- Loss functions for neural networks
- module
- Base neural network module - Foundation for all PyTorch-compatible layers
- normalization
- Normalization layers
- pooling
- Pooling layers
Functions§
- register_
nn_ module - Register the nn module with Python