Skip to main content

Module nn

Module nn 

Source
Expand description

Neural Network module - PyTorch-compatible neural network layers and containers

This module provides a modular structure for neural network components:

  • module - Base PyModule class and core functionality
  • linear - Linear/Dense layers
  • container - Sequential, ModuleList, and other containers
  • activation - Activation functions
  • loss - Loss functions
  • conv - Convolutional layers (Conv1d, Conv2d)
  • normalization - Normalization layers (BatchNorm, LayerNorm)
  • dropout - Dropout and regularization layers
  • pooling - Pooling layers (MaxPool, AvgPool, AdaptivePool)

Re-exports§

pub use container::PyModuleList;
pub use container::PySequential;
pub use conv::PyConv1d;
pub use conv::PyConv2d;
pub use dropout::PyAlphaDropout;
pub use dropout::PyDropout;
pub use dropout::PyDropout2d;
pub use dropout::PyDropout3d;
pub use linear::PyLinear;
pub use module::PyModule as PyNNModule;
pub use normalization::PyBatchNorm1d;
pub use normalization::PyBatchNorm2d;
pub use normalization::PyLayerNorm;
pub use pooling::PyAdaptiveAvgPool2d;
pub use pooling::PyAdaptiveMaxPool2d;
pub use pooling::PyAvgPool2d;
pub use pooling::PyMaxPool2d;

Modules§

activation
Activation functions for neural networks
container
Neural network containers - Sequential, ModuleList, etc.
conv
Convolutional neural network layers
dropout
Dropout and regularization layers
linear
Linear (fully connected) neural network layer
loss
Loss functions for neural networks
module
Base neural network module - Foundation for all PyTorch-compatible layers
normalization
Normalization layers
pooling
Pooling layers

Functions§

register_nn_module
Register the nn module with Python