1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
//! Executor for running tests with mocked environment
//!
//! See [`MockExecutor`]
use std::collections::VecDeque;
use std::fmt::{self, Debug, Display};
use std::future::Future;
use std::iter;
use std::pin::Pin;
use std::sync::{Arc, Mutex, MutexGuard};
use std::task::{Context, Poll, Wake, Waker};
use futures::pin_mut;
use futures::task::{FutureObj, Spawn, SpawnError};
use futures::FutureExt as _;
use educe::Educe;
use itertools::{chain, izip};
use slotmap::DenseSlotMap;
use strum::EnumIter;
use tracing::trace;
use tor_rtcompat::BlockOn;
use Poll::*;
use TaskState::*;
/// Type-erased future, one for each of our (normal) tasks
type TaskFuture = FutureObj<'static, ()>;
/// Future for the argument to `block_on`, which is handled specially
type MainFuture<'m> = Pin<&'m mut dyn Future<Output = ()>>;
//---------- principal data structures ----------
/// Executor for running tests with mocked environment
///
/// For test cases which don't actually wait for anything in the real world.
///
/// This is the executor.
/// It implements [`Spawn`] and [`BlockOn`]
///
/// It will usually be used as part of a `MockRuntime`.
///
/// # Restricted environment
///
/// Tests run with this executor must not attempt to block
/// on anything "outside":
/// every future that anything awaits must (eventually) be woken directly
/// *by some other task* in the same test case.
///
/// (By directly we mean that the [`Waker::wake`] call is made
/// by that waking future, before that future itself awaits anything.)
///
/// # Panics
///
/// This executor will malfunction or panic if reentered.
#[derive(Clone, Default, Educe)]
#[educe(Debug)]
pub struct MockExecutor {
/// Mutable state
#[educe(Debug(ignore))]
data: ArcMutexData,
}
/// Mutable state, wrapper type mostly so we can provide `.lock()`
#[derive(Clone, Default)]
struct ArcMutexData(Arc<Mutex<Data>>);
/// Task id, module to hide `Ti` alias
mod task_id {
slotmap::new_key_type! {
/// Task ID, usually called `TaskId`
///
/// Short name in special `task_id` module so that [`Debug`] is nice
pub(super) struct Ti;
}
}
use task_id::Ti as TaskId;
/// Executor's state
///
/// ### Task state machine
///
/// A task is created in `tasks`, `Awake`, so also in `awake`.
///
/// When we poll it, we take it out of `awake` and set it to `Asleep`,
/// and then call `poll()`.
/// Any time after that, it can be made `Awake` again (and put back onto `awake`)
/// by the waker ([`ActualWaker`], wrapped in [`Waker`]).
///
/// The task's future is of course also present here in this data structure.
/// However, during poll we must release the lock,
/// so we cannot borrow the future from `Data`.
/// Instead, we move it out. So `Task.fut` is an `Option`.
///
/// ### "Main" task - the argument to `block_on`
///
/// The signature of `BlockOn::block_on` accepts a non-`'static` future
/// (and a non-`Send`/`Sync` one).
///
/// So we cannot store that future in `Data` because `Data` is `'static`.
/// Instead, this main task future is passed as an argument down the call stack.
/// In the data structure we simply store a placeholder, `TaskFutureInfo::Main`.
#[derive(Default)]
struct Data {
/// Tasks
///
/// Includes tasks spawned with `spawn`,
/// and also the future passed to `block_on`.
tasks: DenseSlotMap<TaskId, Task>,
/// `awake` lists precisely: tasks that are `Awake`, plus maybe stale `TaskId`s
///
/// Tasks are pushed onto the *back* when woken,
/// so back is the most recently woken.
awake: VecDeque<TaskId>,
/// If a future from `progress_until_stalled` exists
progressing_until_stalled: Option<ProgressingUntilStalled>,
/// Scheduling policy
scheduling: SchedulingPolicy,
}
/// How we should schedule?
#[derive(Debug, Clone, Default, EnumIter)]
#[non_exhaustive]
pub enum SchedulingPolicy {
/// Task *most* recently woken is run
///
/// This is the default.
///
/// It will expose starvation bugs if a task never sleeps.
/// (Which is a good thing in tests.)
#[default]
Stack,
/// Task *least* recently woken is run.
Queue,
}
/// Record of a single task
///
/// Tracks a spawned task, or the main task (the argument to `block_on`).
///
/// Stored in [`Data`]`.tasks`.
struct Task {
/// For debugging output
desc: String,
/// Has this been woken via a waker? (And is it in `Data.awake`?)
state: TaskState,
/// The actual future (or a placeholder for it)
///
/// May be `None` because we've temporarily moved it out so we can poll it
fut: Option<TaskFutureInfo>,
}
/// A future as stored in our record of a [`Task`]
enum TaskFutureInfo {
/// The [`Future`]. All is normal.
Normal(TaskFuture),
/// The future isn't here because this task is the main future for `block_on`
Main,
}
/// State of a task - do we think it needs to be polled?
///
/// Stored in [`Task`]`.state`.
#[derive(Debug)]
enum TaskState {
/// Awake - needs to be polled
///
/// Established by [`waker.wake()`](Waker::wake)
Awake,
/// Asleep - does *not* need to be polled
///
/// Established each time just before we call the future's [`poll`](Future::poll)
Asleep,
}
/// Actual implementor of `Wake` for use in a `Waker`
///
/// Futures (eg, channels from [`futures`]) will use this to wake a task
/// when it should be polled.
struct ActualWaker {
/// Executor state
data: ArcMutexData,
/// Which task this is
id: TaskId,
}
/// State used for an in-progress call to
/// [`progress_until_stalled`][`MockExecutor::progress_until_stalled`]
///
/// If present in [`Data`], an (async) call to `progress_until_stalled`
/// is in progress.
///
/// The future from `progress_until_stalled`, [`ProgressUntilStalledFuture`]
/// is a normal-ish future.
/// It can be polled in the normal way.
/// When it is polled, it looks here, in `finished`, to see if it's `Ready`.
///
/// The future is made ready, and woken (via `waker`),
/// by bespoke code in the task executor loop.
///
/// When `ProgressUntilStalledFuture` (maybe completes and) is dropped,
/// its `Drop` impl is used to remove this from `Data.progressing_until_stalled`.
#[derive(Debug)]
struct ProgressingUntilStalled {
/// Have we, in fact, stalled?
///
/// Made `Ready` by special code in the executor loop
finished: Poll<()>,
/// Waker
///
/// Signalled by special code in the executor loop
waker: Option<Waker>,
}
/// Future from
/// [`progress_until_stalled`][`MockExecutor::progress_until_stalled`]
///
/// See [`ProgressingUntilStalled`] for an overview of this aspect of the contraption.
///
/// Existence of this struct implies `Data.progressing_until_stalled` is `Some`.
/// There can only be one at a time.
#[derive(Educe)]
#[educe(Debug)]
struct ProgressUntilStalledFuture {
/// Executor's state; this future's state is in `.progressing_until_stalled`
#[educe(Debug(ignore))]
data: ArcMutexData,
}
//---------- creation ----------
impl MockExecutor {
/// Make a `MockExecutor` with default parameters
pub fn new() -> Self {
Self::default()
}
/// Make a `MockExecutor` with a specific `SchedulingPolicy`
pub fn with_scheduling(scheduling: SchedulingPolicy) -> Self {
Data {
scheduling,
..Default::default()
}
.into()
}
}
impl From<Data> for MockExecutor {
fn from(data: Data) -> MockExecutor {
MockExecutor {
data: ArcMutexData(Arc::new(Mutex::new(data))),
}
}
}
//---------- spawning ----------
impl MockExecutor {
/// Spawn a task and return something to identify it
///
/// `desc` should `Display` as some kind of short string (ideally without spaces)
/// and will be used in the `Debug` impl and trace log messages from `MockExecutor`.
///
/// The returned value is an opaque task identifier which is very cheap to clone
/// and which can be used by the caller in debug logging,
/// if it's desired to correlate with the debug output from `MockExecutor`.
/// Most callers will want to ignore it.
///
/// This method is infalliable. (The `MockExecutor` cannot be shut down.)
pub fn spawn_identified(
&self,
desc: impl Display,
fut: impl Future<Output = ()> + Send + 'static,
) -> impl Debug + Clone + Send + 'static {
self.spawn_internal(desc.to_string(), FutureObj::from(Box::new(fut)))
}
/// Spawn a task and return its `TaskId`
///
/// Convenience method for use by `spawn_identified` and `spawn_obj`.
/// The future passed to `block_on` is not handled here.
fn spawn_internal(&self, desc: String, fut: TaskFuture) -> TaskId {
let mut data = self.data.lock();
data.insert_task(desc, TaskFutureInfo::Normal(fut))
}
}
impl Data {
/// Insert a task given its `TaskFutureInfo` and return its `TaskId`.
fn insert_task(&mut self, desc: String, fut: TaskFutureInfo) -> TaskId {
let state = Awake;
let id = self.tasks.insert(Task {
state,
desc,
fut: Some(fut),
});
self.awake.push_back(id);
trace!("MockExecutor spawned {:?}={:?}", id, self.tasks[id]);
id
}
}
impl Spawn for MockExecutor {
fn spawn_obj(&self, future: TaskFuture) -> Result<(), SpawnError> {
self.spawn_internal("".into(), future);
Ok(())
}
}
//---------- block_on ----------
impl BlockOn for MockExecutor {
/// Run `fut` to completion, synchronously
///
/// # Panics
///
/// Might malfunction or panic if:
///
/// * The provided future doesn't complete (without externally blocking),
/// but instead waits for something.
///
/// * The `MockExecutor` is reentered. (Eg, `block_on` is reentered.)
fn block_on<F>(&self, fut: F) -> F::Output
where
F: Future,
{
let mut value: Option<F::Output> = None;
let fut = {
let value = &mut value;
async move {
trace!("MockExecutor block_on future...");
let t = fut.await;
trace!("MockExecutor block_on future returned...");
*value = Some(t);
trace!("MockExecutor block_on future exiting.");
}
};
{
pin_mut!(fut);
self.data
.lock()
.insert_task("main".into(), TaskFutureInfo::Main);
self.execute_to_completion(fut);
}
#[allow(clippy::let_and_return)] // clarity
let value = value.take().unwrap_or_else(|| {
let data = self.data.lock();
panic!(
r"
all futures blocked. waiting for the real world? or deadlocked (waiting for each other) ?
{data:#?}
"
);
});
value
}
}
//---------- execution - core implementation ----------
impl MockExecutor {
/// Keep polling tasks until nothing more can be done
///
/// Ie, stop when `awake` is empty and `progressing_until_stalled` is `None`.
fn execute_to_completion(&self, mut main_fut: MainFuture) {
trace!("MockExecutor execute_to_completion...");
loop {
self.execute_until_first_stall(main_fut.as_mut());
// Handle `progressing_until_stalled`
let pus_waker = {
let mut data = self.data.lock();
let pus = &mut data.progressing_until_stalled;
trace!("MockExecutor execute_to_completion PUS={:?}", &pus);
let Some(pus) = pus else {
// No progressing_until_stalled, we're actually done.
break;
};
assert_eq!(
pus.finished, Pending,
"ProgressingUntilStalled finished twice?!"
);
pus.finished = Ready(());
pus.waker
.clone()
.expect("ProgressUntilStalledFuture not ever polled!")
};
pus_waker.wake();
}
trace!("MockExecutor execute_to_completion done");
}
/// Keep polling tasks until `awake` is empty
///
/// (Ignores `progressing_until_stalled` - so if one is active,
/// will return when all other tasks have blocked.)
///
/// # Panics
///
/// Might malfunction or panic if called reentrantly
fn execute_until_first_stall(&self, mut main_fut: MainFuture) {
trace!("MockExecutor execute_until_first_stall ...");
'outer: loop {
// Take a `Awake` task off `awake` and make it `Polling`
let (id, mut fut) = 'inner: loop {
let mut data = self.data.lock();
let Some(id) = data.schedule() else {
break 'outer;
};
let Some(task) = data.tasks.get_mut(id) else {
trace!("MockExecutor {id:?} vanished");
continue;
};
task.state = Asleep;
let fut = task.fut.take().expect("future missing from task!");
break 'inner (id, fut);
};
// Poll the selected task
let waker = Waker::from(Arc::new(ActualWaker {
data: self.data.clone(),
id,
}));
trace!("MockExecutor {id:?} polling...");
let mut cx = Context::from_waker(&waker);
let r = match &mut fut {
TaskFutureInfo::Normal(fut) => fut.poll_unpin(&mut cx),
TaskFutureInfo::Main => main_fut.as_mut().poll(&mut cx),
};
// Deal with the returned `Poll`
{
let mut data = self.data.lock();
let task = data
.tasks
.get_mut(id)
.expect("task vanished while we were polling it");
match r {
Pending => {
trace!("MockExecutor {id:?} -> Pending");
if task.fut.is_some() {
panic!("task reinserted while we polled it?!");
}
// The task might have been woken *by its own poll method*.
// That's why we set it to `Asleep` *earlier* rather than here.
// All we need to do is put the future back.
task.fut = Some(fut);
}
Ready(()) => {
trace!("MockExecutor {id:?} -> Ready");
// Oh, it finished!
// It might be in `awake`, but that's allowed to contain stale tasks,
// so we *don't* need to scan that list and remove it.
data.tasks.remove(id);
}
}
}
}
trace!("MockExecutor execute_until_first_stall done.");
}
}
impl Data {
/// Return the next task to run
///
/// The task is removed from `awake`, but **`state` is not set to `Asleep`**.
/// The caller must restore the invariant!
fn schedule(&mut self) -> Option<TaskId> {
use SchedulingPolicy as SP;
match self.scheduling {
SP::Stack => self.awake.pop_back(),
SP::Queue => self.awake.pop_front(),
}
}
}
impl Wake for ActualWaker {
fn wake(self: Arc<Self>) {
let mut data = self.data.lock();
trace!("MockExecutor {:?} wake", &self.id);
let Some(task) = data.tasks.get_mut(self.id) else {
return;
};
match task.state {
Awake => {}
Asleep => {
task.state = Awake;
data.awake.push_back(self.id);
}
}
}
}
//---------- "progress until stalled" functionality ----------
impl MockExecutor {
/// Run tasks in the current executor until every other task is waiting
///
/// # Panics
///
/// Might malfunction or panic if more than one such call is running at once.
///
/// (Ie, you must `.await` or drop the returned `Future`
/// before calling this method again.)
///
/// Must be called and awaited within a future being run by `self`.
pub fn progress_until_stalled(&self) -> impl Future<Output = ()> {
let mut data = self.data.lock();
assert!(
data.progressing_until_stalled.is_none(),
"progress_until_stalled called more than once"
);
trace!("MockExecutor progress_until_stalled...");
data.progressing_until_stalled = Some(ProgressingUntilStalled {
finished: Pending,
waker: None,
});
ProgressUntilStalledFuture {
data: self.data.clone(),
}
}
}
impl Future for ProgressUntilStalledFuture {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<()> {
let mut data = self.data.lock();
let pus = data.progressing_until_stalled.as_mut();
trace!("MockExecutor progress_until_stalled polling... {:?}", &pus);
let pus = pus.expect("ProgressingUntilStalled missing");
pus.waker = Some(cx.waker().clone());
pus.finished
}
}
impl Drop for ProgressUntilStalledFuture {
fn drop(&mut self) {
self.data.lock().progressing_until_stalled = None;
}
}
//---------- ancillary and convenience functions ----------
/// Trait to let us assert at compile time that something is nicely `Sync` etc.
trait EnsureSyncSend: Sync + Send + 'static {}
impl EnsureSyncSend for ActualWaker {}
impl EnsureSyncSend for MockExecutor {}
impl ArcMutexData {
/// Lock and obtain the guard
///
/// Convenience method which panics on poison
fn lock(&self) -> MutexGuard<Data> {
self.0.lock().expect("data lock poisoned")
}
}
//---------- bespoke Debug impls ----------
// See `impl Debug for Data` for notes on the output
impl Debug for Task {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let Task { desc, state, fut } = self;
write!(f, "{:?}", desc)?;
write!(f, "=")?;
match fut {
None => write!(f, "P")?,
Some(TaskFutureInfo::Normal(_)) => write!(f, "f")?,
Some(TaskFutureInfo::Main) => write!(f, "m")?,
}
match state {
Awake => write!(f, "W")?,
Asleep => write!(f, "s")?,
};
Ok(())
}
}
/// Helper: `Debug`s as a list of tasks, given the `Data` for lookups and a list of the ids
struct DebugTasks<'d, F>(&'d Data, F);
// See `impl Debug for Data` for notes on the output
impl<F, I> Debug for DebugTasks<'_, F>
where
F: Fn() -> I,
I: Iterator<Item = TaskId>,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let DebugTasks(data, ids) = self;
for (id, delim) in izip!(ids(), chain!(iter::once(""), iter::repeat(" ")),) {
write!(f, "{delim}{id:?}")?;
match data.tasks.get(id) {
None => write!(f, "-")?,
Some(task) => write!(f, "={task:?}")?,
}
}
Ok(())
}
}
/// `Task`s in `Data` are printed as `Ti(ID)"SPEC"=FLAGS"`.
///
/// `FLAGS` are:
///
/// * `P`: this task is being polled (its `TaskFutureInfo` is absent)
/// * `f`: this is a normal task with a future and its future is present in `Data`
/// * `m`: this is the main task from `block_on`
///
/// * `W`: the task is awake
/// * `s`: the task is asleep
//
// We do it this way because the naive dump from derive is very expansive
// and makes it impossible to see the wood for the trees.
// This very compact representation it easier to find a task of interest in the output.
//
// This is implemented in `impl Debug for Task`.
impl Debug for Data {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let Data {
tasks,
awake,
progressing_until_stalled: pus,
scheduling,
} = self;
let mut s = f.debug_struct("Data");
s.field("tasks", &DebugTasks(self, || tasks.keys()));
s.field("awake", &DebugTasks(self, || awake.iter().cloned()));
s.field("p.u.s", pus);
s.field("scheduling", scheduling);
s.finish()
}
}
#[cfg(test)]
mod test {
// @@ begin test lint list maintained by maint/add_warning @@
#![allow(clippy::bool_assert_comparison)]
#![allow(clippy::clone_on_copy)]
#![allow(clippy::dbg_macro)]
#![allow(clippy::print_stderr)]
#![allow(clippy::print_stdout)]
#![allow(clippy::single_char_pattern)]
#![allow(clippy::unwrap_used)]
#![allow(clippy::unchecked_duration_subtraction)]
#![allow(clippy::useless_vec)]
#![allow(clippy::needless_pass_by_value)]
//! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
use super::*;
use futures::channel::mpsc;
use futures::{SinkExt as _, StreamExt as _};
use tracing_test::traced_test;
#[traced_test]
#[test]
fn simple() {
let runtime = MockExecutor::default();
let val = runtime.block_on(async { 42 });
assert_eq!(val, 42);
}
#[traced_test]
#[test]
fn stall() {
let runtime = MockExecutor::default();
runtime.block_on({
let runtime = runtime.clone();
async move {
const N: usize = 3;
let (mut txs, mut rxs): (Vec<_>, Vec<_>) =
(0..N).map(|_| mpsc::channel::<usize>(5)).unzip();
let mut rx_n = rxs.pop().unwrap();
for (i, mut rx) in rxs.into_iter().enumerate() {
runtime.spawn_identified(i, {
let mut txs = txs.clone();
async move {
loop {
eprintln!("task {i} rx...");
let v = rx.next().await.unwrap();
let nv = v + 1;
eprintln!("task {i} rx {v}, tx {nv}");
let v = nv;
txs[v].send(v).await.unwrap();
}
}
});
}
dbg!();
let _: mpsc::TryRecvError = rx_n.try_next().unwrap_err();
dbg!();
runtime.progress_until_stalled().await;
dbg!();
let _: mpsc::TryRecvError = rx_n.try_next().unwrap_err();
dbg!();
txs[0].send(0).await.unwrap();
dbg!();
runtime.progress_until_stalled().await;
dbg!();
let r = rx_n.next().await;
assert_eq!(r, Some(N - 1));
dbg!();
let _: mpsc::TryRecvError = rx_n.try_next().unwrap_err();
runtime.spawn_identified("tx", {
let txs = txs.clone();
async {
eprintln!("sending task...");
for (i, mut tx) in txs.into_iter().enumerate() {
eprintln!("sending 0 to {i}...");
tx.send(0).await.unwrap();
}
eprintln!("sending task done");
}
});
for i in 0..txs.len() {
eprintln!("main {i} wait stall...");
runtime.progress_until_stalled().await;
eprintln!("main {i} rx wait...");
let r = rx_n.next().await;
eprintln!("main {i} rx = {r:?}");
assert!(r == Some(0) || r == Some(N - 1));
}
eprintln!("finishing...");
runtime.progress_until_stalled().await;
eprintln!("finished.");
}
});
}
}