1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
//! Executor for running tests with mocked environment
//!
//! See [`MockExecutor`]

use std::collections::VecDeque;
use std::fmt::{self, Debug, Display};
use std::future::Future;
use std::iter;
use std::pin::Pin;
use std::sync::{Arc, Mutex, MutexGuard};
use std::task::{Context, Poll, Wake, Waker};

use futures::pin_mut;
use futures::task::{FutureObj, Spawn, SpawnError};
use futures::FutureExt as _;

use educe::Educe;
use itertools::{chain, izip};
use slotmap::DenseSlotMap;
use strum::EnumIter;
use tracing::trace;

use tor_rtcompat::BlockOn;

use Poll::*;
use TaskState::*;

/// Type-erased future, one for each of our (normal) tasks
type TaskFuture = FutureObj<'static, ()>;

/// Future for the argument to `block_on`, which is handled specially
type MainFuture<'m> = Pin<&'m mut dyn Future<Output = ()>>;

//---------- principal data structures ----------

/// Executor for running tests with mocked environment
///
/// For test cases which don't actually wait for anything in the real world.
///
/// This is the executor.
/// It implements [`Spawn`] and [`BlockOn`]
///
/// It will usually be used as part of a `MockRuntime`.
///
/// # Restricted environment
///
/// Tests run with this executor must not attempt to block
/// on anything "outside":
/// every future that anything awaits must (eventually) be woken directly
/// *by some other task* in the same test case.
///
/// (By directly we mean that the [`Waker::wake`] call is made
/// by that waking future, before that future itself awaits anything.)
///
/// # Panics
///
/// This executor will malfunction or panic if reentered.
#[derive(Clone, Default, Educe)]
#[educe(Debug)]
pub struct MockExecutor {
    /// Mutable state
    #[educe(Debug(ignore))]
    data: ArcMutexData,
}

/// Mutable state, wrapper type mostly so we can provide `.lock()`
#[derive(Clone, Default)]
struct ArcMutexData(Arc<Mutex<Data>>);

/// Task id, module to hide `Ti` alias
mod task_id {
    slotmap::new_key_type! {
        /// Task ID, usually called `TaskId`
        ///
        /// Short name in special `task_id` module so that [`Debug`] is nice
        pub(super) struct Ti;
    }
}
use task_id::Ti as TaskId;

/// Executor's state
///
/// ### Task state machine
///
/// A task is created in `tasks`, `Awake`, so also in `awake`.
///
/// When we poll it, we take it out of `awake` and set it to `Asleep`,
/// and then call `poll()`.
/// Any time after that, it can be made `Awake` again (and put back onto `awake`)
/// by the waker ([`ActualWaker`], wrapped in [`Waker`]).
///
/// The task's future is of course also present here in this data structure.
/// However, during poll we must release the lock,
/// so we cannot borrow the future from `Data`.
/// Instead, we move it out.  So `Task.fut` is an `Option`.
///
/// ### "Main" task - the argument to `block_on`
///
/// The signature of `BlockOn::block_on` accepts a non-`'static` future
/// (and a non-`Send`/`Sync` one).
///
/// So we cannot store that future in `Data` because `Data` is `'static`.
/// Instead, this main task future is passed as an argument down the call stack.
/// In the data structure we simply store a placeholder, `TaskFutureInfo::Main`.
#[derive(Default)]
struct Data {
    /// Tasks
    ///
    /// Includes tasks spawned with `spawn`,
    /// and also the future passed to `block_on`.
    tasks: DenseSlotMap<TaskId, Task>,

    /// `awake` lists precisely: tasks that are `Awake`, plus maybe stale `TaskId`s
    ///
    /// Tasks are pushed onto the *back* when woken,
    /// so back is the most recently woken.
    awake: VecDeque<TaskId>,

    /// If a future from `progress_until_stalled` exists
    progressing_until_stalled: Option<ProgressingUntilStalled>,

    /// Scheduling policy
    scheduling: SchedulingPolicy,
}

/// How we should schedule?
#[derive(Debug, Clone, Default, EnumIter)]
#[non_exhaustive]
pub enum SchedulingPolicy {
    /// Task *most* recently woken is run
    ///
    /// This is the default.
    ///
    /// It will expose starvation bugs if a task never sleeps.
    /// (Which is a good thing in tests.)
    #[default]
    Stack,
    /// Task *least* recently woken is run.
    Queue,
}

/// Record of a single task
///
/// Tracks a spawned task, or the main task (the argument to `block_on`).
///
/// Stored in [`Data`]`.tasks`.
struct Task {
    /// For debugging output
    desc: String,
    /// Has this been woken via a waker?  (And is it in `Data.awake`?)
    state: TaskState,
    /// The actual future (or a placeholder for it)
    ///
    /// May be `None` because we've temporarily moved it out so we can poll it
    fut: Option<TaskFutureInfo>,
}

/// A future as stored in our record of a [`Task`]
enum TaskFutureInfo {
    /// The [`Future`].  All is normal.
    Normal(TaskFuture),
    /// The future isn't here because this task is the main future for `block_on`
    Main,
}

/// State of a task - do we think it needs to be polled?
///
/// Stored in [`Task`]`.state`.
#[derive(Debug)]
enum TaskState {
    /// Awake - needs to be polled
    ///
    /// Established by [`waker.wake()`](Waker::wake)
    Awake,
    /// Asleep - does *not* need to be polled
    ///
    /// Established each time just before we call the future's [`poll`](Future::poll)
    Asleep,
}

/// Actual implementor of `Wake` for use in a `Waker`
///
/// Futures (eg, channels from [`futures`]) will use this to wake a task
/// when it should be polled.
struct ActualWaker {
    /// Executor state
    data: ArcMutexData,

    /// Which task this is
    id: TaskId,
}

/// State used for an in-progress call to
/// [`progress_until_stalled`][`MockExecutor::progress_until_stalled`]
///
/// If present in [`Data`], an (async) call to `progress_until_stalled`
/// is in progress.
///
/// The future from `progress_until_stalled`, [`ProgressUntilStalledFuture`]
/// is a normal-ish future.
/// It can be polled in the normal way.
/// When it is polled, it looks here, in `finished`, to see if it's `Ready`.
///
/// The future is made ready, and woken (via `waker`),
/// by bespoke code in the task executor loop.
///
/// When `ProgressUntilStalledFuture` (maybe completes and) is dropped,
/// its `Drop` impl is used to remove this from `Data.progressing_until_stalled`.
#[derive(Debug)]
struct ProgressingUntilStalled {
    /// Have we, in fact, stalled?
    ///
    /// Made `Ready` by special code in the executor loop
    finished: Poll<()>,

    /// Waker
    ///
    /// Signalled by special code in the executor loop
    waker: Option<Waker>,
}

/// Future from
/// [`progress_until_stalled`][`MockExecutor::progress_until_stalled`]
///
/// See [`ProgressingUntilStalled`] for an overview of this aspect of the contraption.
///
/// Existence of this struct implies `Data.progressing_until_stalled` is `Some`.
/// There can only be one at a time.
#[derive(Educe)]
#[educe(Debug)]
struct ProgressUntilStalledFuture {
    /// Executor's state; this future's state is in `.progressing_until_stalled`
    #[educe(Debug(ignore))]
    data: ArcMutexData,
}

//---------- creation ----------

impl MockExecutor {
    /// Make a `MockExecutor` with default parameters
    pub fn new() -> Self {
        Self::default()
    }

    /// Make a `MockExecutor` with a specific `SchedulingPolicy`
    pub fn with_scheduling(scheduling: SchedulingPolicy) -> Self {
        Data {
            scheduling,
            ..Default::default()
        }
        .into()
    }
}

impl From<Data> for MockExecutor {
    fn from(data: Data) -> MockExecutor {
        MockExecutor {
            data: ArcMutexData(Arc::new(Mutex::new(data))),
        }
    }
}

//---------- spawning ----------

impl MockExecutor {
    /// Spawn a task and return something to identify it
    ///
    /// `desc` should `Display` as some kind of short string (ideally without spaces)
    /// and will be used in the `Debug` impl and trace log messages from `MockExecutor`.
    ///
    /// The returned value is an opaque task identifier which is very cheap to clone
    /// and which can be used by the caller in debug logging,
    /// if it's desired to correlate with the debug output from `MockExecutor`.
    /// Most callers will want to ignore it.
    ///
    /// This method is infalliable.  (The `MockExecutor` cannot be shut down.)
    pub fn spawn_identified(
        &self,
        desc: impl Display,
        fut: impl Future<Output = ()> + Send + 'static,
    ) -> impl Debug + Clone + Send + 'static {
        self.spawn_internal(desc.to_string(), FutureObj::from(Box::new(fut)))
    }

    /// Spawn a task and return its `TaskId`
    ///
    /// Convenience method for use by `spawn_identified` and `spawn_obj`.
    /// The future passed to `block_on` is not handled here.
    fn spawn_internal(&self, desc: String, fut: TaskFuture) -> TaskId {
        let mut data = self.data.lock();
        data.insert_task(desc, TaskFutureInfo::Normal(fut))
    }
}

impl Data {
    /// Insert a task given its `TaskFutureInfo` and return its `TaskId`.
    fn insert_task(&mut self, desc: String, fut: TaskFutureInfo) -> TaskId {
        let state = Awake;
        let id = self.tasks.insert(Task {
            state,
            desc,
            fut: Some(fut),
        });
        self.awake.push_back(id);
        trace!("MockExecutor spawned {:?}={:?}", id, self.tasks[id]);
        id
    }
}

impl Spawn for MockExecutor {
    fn spawn_obj(&self, future: TaskFuture) -> Result<(), SpawnError> {
        self.spawn_internal("".into(), future);
        Ok(())
    }
}

//---------- block_on ----------

impl BlockOn for MockExecutor {
    /// Run `fut` to completion, synchronously
    ///
    /// # Panics
    ///
    /// Might malfunction or panic if:
    ///
    /// * The provided future doesn't complete (without externally blocking),
    ///    but instead waits for something.
    ///
    /// * The `MockExecutor` is reentered.  (Eg, `block_on` is reentered.)
    fn block_on<F>(&self, fut: F) -> F::Output
    where
        F: Future,
    {
        let mut value: Option<F::Output> = None;
        let fut = {
            let value = &mut value;
            async move {
                trace!("MockExecutor block_on future...");
                let t = fut.await;
                trace!("MockExecutor block_on future returned...");
                *value = Some(t);
                trace!("MockExecutor block_on future exiting.");
            }
        };

        {
            pin_mut!(fut);
            self.data
                .lock()
                .insert_task("main".into(), TaskFutureInfo::Main);
            self.execute_to_completion(fut);
        }

        #[allow(clippy::let_and_return)] // clarity
        let value = value.take().unwrap_or_else(|| {
            let data = self.data.lock();
            panic!(
                r"
all futures blocked. waiting for the real world? or deadlocked (waiting for each other) ?

{data:#?}
"
            );
        });

        value
    }
}

//---------- execution - core implementation ----------

impl MockExecutor {
    /// Keep polling tasks until nothing more can be done
    ///
    /// Ie, stop when `awake` is empty and `progressing_until_stalled` is `None`.
    fn execute_to_completion(&self, mut main_fut: MainFuture) {
        trace!("MockExecutor execute_to_completion...");
        loop {
            self.execute_until_first_stall(main_fut.as_mut());

            // Handle `progressing_until_stalled`
            let pus_waker = {
                let mut data = self.data.lock();
                let pus = &mut data.progressing_until_stalled;
                trace!("MockExecutor execute_to_completion PUS={:?}", &pus);
                let Some(pus) = pus else {
                    // No progressing_until_stalled, we're actually done.
                    break;
                };
                assert_eq!(
                    pus.finished, Pending,
                    "ProgressingUntilStalled finished twice?!"
                );
                pus.finished = Ready(());
                pus.waker
                    .clone()
                    .expect("ProgressUntilStalledFuture not ever polled!")
            };
            pus_waker.wake();
        }
        trace!("MockExecutor execute_to_completion done");
    }

    /// Keep polling tasks until `awake` is empty
    ///
    /// (Ignores `progressing_until_stalled` - so if one is active,
    /// will return when all other tasks have blocked.)
    ///
    /// # Panics
    ///
    /// Might malfunction or panic if called reentrantly
    fn execute_until_first_stall(&self, mut main_fut: MainFuture) {
        trace!("MockExecutor execute_until_first_stall ...");
        'outer: loop {
            // Take a `Awake` task off `awake` and make it `Polling`
            let (id, mut fut) = 'inner: loop {
                let mut data = self.data.lock();
                let Some(id) = data.schedule() else {
                    break 'outer;
                };
                let Some(task) = data.tasks.get_mut(id) else {
                    trace!("MockExecutor {id:?} vanished");
                    continue;
                };
                task.state = Asleep;
                let fut = task.fut.take().expect("future missing from task!");
                break 'inner (id, fut);
            };

            // Poll the selected task
            let waker = Waker::from(Arc::new(ActualWaker {
                data: self.data.clone(),
                id,
            }));
            trace!("MockExecutor {id:?} polling...");
            let mut cx = Context::from_waker(&waker);
            let r = match &mut fut {
                TaskFutureInfo::Normal(fut) => fut.poll_unpin(&mut cx),
                TaskFutureInfo::Main => main_fut.as_mut().poll(&mut cx),
            };

            // Deal with the returned `Poll`
            {
                let mut data = self.data.lock();
                let task = data
                    .tasks
                    .get_mut(id)
                    .expect("task vanished while we were polling it");

                match r {
                    Pending => {
                        trace!("MockExecutor {id:?} -> Pending");
                        if task.fut.is_some() {
                            panic!("task reinserted while we polled it?!");
                        }
                        // The task might have been woken *by its own poll method*.
                        // That's why we set it to `Asleep` *earlier* rather than here.
                        // All we need to do is put the future back.
                        task.fut = Some(fut);
                    }
                    Ready(()) => {
                        trace!("MockExecutor {id:?} -> Ready");
                        // Oh, it finished!
                        // It might be in `awake`, but that's allowed to contain stale tasks,
                        // so we *don't* need to scan that list and remove it.
                        data.tasks.remove(id);
                    }
                }
            }
        }
        trace!("MockExecutor execute_until_first_stall done.");
    }
}

impl Data {
    /// Return the next task to run
    ///
    /// The task is removed from `awake`, but **`state` is not set to `Asleep`**.
    /// The caller must restore the invariant!
    fn schedule(&mut self) -> Option<TaskId> {
        use SchedulingPolicy as SP;
        match self.scheduling {
            SP::Stack => self.awake.pop_back(),
            SP::Queue => self.awake.pop_front(),
        }
    }
}

impl Wake for ActualWaker {
    fn wake(self: Arc<Self>) {
        let mut data = self.data.lock();
        trace!("MockExecutor {:?} wake", &self.id);
        let Some(task) = data.tasks.get_mut(self.id) else {
            return;
        };
        match task.state {
            Awake => {}
            Asleep => {
                task.state = Awake;
                data.awake.push_back(self.id);
            }
        }
    }
}

//---------- "progress until stalled" functionality ----------

impl MockExecutor {
    /// Run tasks in the current executor until every other task is waiting
    ///
    /// # Panics
    ///
    /// Might malfunction or panic if more than one such call is running at once.
    ///
    /// (Ie, you must `.await` or drop the returned `Future`
    /// before calling this method again.)
    ///
    /// Must be called and awaited within a future being run by `self`.
    pub fn progress_until_stalled(&self) -> impl Future<Output = ()> {
        let mut data = self.data.lock();
        assert!(
            data.progressing_until_stalled.is_none(),
            "progress_until_stalled called more than once"
        );
        trace!("MockExecutor progress_until_stalled...");
        data.progressing_until_stalled = Some(ProgressingUntilStalled {
            finished: Pending,
            waker: None,
        });
        ProgressUntilStalledFuture {
            data: self.data.clone(),
        }
    }
}

impl Future for ProgressUntilStalledFuture {
    type Output = ();

    fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<()> {
        let mut data = self.data.lock();
        let pus = data.progressing_until_stalled.as_mut();
        trace!("MockExecutor progress_until_stalled polling... {:?}", &pus);
        let pus = pus.expect("ProgressingUntilStalled missing");
        pus.waker = Some(cx.waker().clone());
        pus.finished
    }
}

impl Drop for ProgressUntilStalledFuture {
    fn drop(&mut self) {
        self.data.lock().progressing_until_stalled = None;
    }
}

//---------- ancillary and convenience functions ----------

/// Trait to let us assert at compile time that something is nicely `Sync` etc.
trait EnsureSyncSend: Sync + Send + 'static {}
impl EnsureSyncSend for ActualWaker {}
impl EnsureSyncSend for MockExecutor {}

impl ArcMutexData {
    /// Lock and obtain the guard
    ///
    /// Convenience method which panics on poison
    fn lock(&self) -> MutexGuard<Data> {
        self.0.lock().expect("data lock poisoned")
    }
}

//---------- bespoke Debug impls ----------

// See `impl Debug for Data` for notes on the output
impl Debug for Task {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let Task { desc, state, fut } = self;
        write!(f, "{:?}", desc)?;
        write!(f, "=")?;
        match fut {
            None => write!(f, "P")?,
            Some(TaskFutureInfo::Normal(_)) => write!(f, "f")?,
            Some(TaskFutureInfo::Main) => write!(f, "m")?,
        }
        match state {
            Awake => write!(f, "W")?,
            Asleep => write!(f, "s")?,
        };
        Ok(())
    }
}

/// Helper: `Debug`s as a list of tasks, given the `Data` for lookups and a list of the ids
struct DebugTasks<'d, F>(&'d Data, F);

// See `impl Debug for Data` for notes on the output
impl<F, I> Debug for DebugTasks<'_, F>
where
    F: Fn() -> I,
    I: Iterator<Item = TaskId>,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let DebugTasks(data, ids) = self;
        for (id, delim) in izip!(ids(), chain!(iter::once(""), iter::repeat(" ")),) {
            write!(f, "{delim}{id:?}")?;
            match data.tasks.get(id) {
                None => write!(f, "-")?,
                Some(task) => write!(f, "={task:?}")?,
            }
        }
        Ok(())
    }
}

/// `Task`s in `Data` are printed as `Ti(ID)"SPEC"=FLAGS"`.
///
/// `FLAGS` are:
///
///  * `P`: this task is being polled (its `TaskFutureInfo` is absent)
///  * `f`: this is a normal task with a future and its future is present in `Data`
///  * `m`: this is the main task from `block_on`
///
///  * `W`: the task is awake
///  * `s`: the task is asleep
//
// We do it this way because the naive dump from derive is very expansive
// and makes it impossible to see the wood for the trees.
// This very compact representation it easier to find a task of interest in the output.
//
// This is implemented in `impl Debug for Task`.
impl Debug for Data {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let Data {
            tasks,
            awake,
            progressing_until_stalled: pus,
            scheduling,
        } = self;
        let mut s = f.debug_struct("Data");
        s.field("tasks", &DebugTasks(self, || tasks.keys()));
        s.field("awake", &DebugTasks(self, || awake.iter().cloned()));
        s.field("p.u.s", pus);
        s.field("scheduling", scheduling);
        s.finish()
    }
}

#[cfg(test)]
mod test {
    // @@ begin test lint list maintained by maint/add_warning @@
    #![allow(clippy::bool_assert_comparison)]
    #![allow(clippy::clone_on_copy)]
    #![allow(clippy::dbg_macro)]
    #![allow(clippy::print_stderr)]
    #![allow(clippy::print_stdout)]
    #![allow(clippy::single_char_pattern)]
    #![allow(clippy::unwrap_used)]
    #![allow(clippy::unchecked_duration_subtraction)]
    #![allow(clippy::useless_vec)]
    #![allow(clippy::needless_pass_by_value)]
    //! <!-- @@ end test lint list maintained by maint/add_warning @@ -->
    use super::*;
    use futures::channel::mpsc;
    use futures::{SinkExt as _, StreamExt as _};
    use tracing_test::traced_test;

    #[traced_test]
    #[test]
    fn simple() {
        let runtime = MockExecutor::default();
        let val = runtime.block_on(async { 42 });
        assert_eq!(val, 42);
    }

    #[traced_test]
    #[test]
    fn stall() {
        let runtime = MockExecutor::default();

        runtime.block_on({
            let runtime = runtime.clone();
            async move {
                const N: usize = 3;
                let (mut txs, mut rxs): (Vec<_>, Vec<_>) =
                    (0..N).map(|_| mpsc::channel::<usize>(5)).unzip();

                let mut rx_n = rxs.pop().unwrap();

                for (i, mut rx) in rxs.into_iter().enumerate() {
                    runtime.spawn_identified(i, {
                        let mut txs = txs.clone();
                        async move {
                            loop {
                                eprintln!("task {i} rx...");
                                let v = rx.next().await.unwrap();
                                let nv = v + 1;
                                eprintln!("task {i} rx {v}, tx {nv}");
                                let v = nv;
                                txs[v].send(v).await.unwrap();
                            }
                        }
                    });
                }

                dbg!();
                let _: mpsc::TryRecvError = rx_n.try_next().unwrap_err();

                dbg!();
                runtime.progress_until_stalled().await;

                dbg!();
                let _: mpsc::TryRecvError = rx_n.try_next().unwrap_err();

                dbg!();
                txs[0].send(0).await.unwrap();

                dbg!();
                runtime.progress_until_stalled().await;

                dbg!();
                let r = rx_n.next().await;
                assert_eq!(r, Some(N - 1));

                dbg!();
                let _: mpsc::TryRecvError = rx_n.try_next().unwrap_err();

                runtime.spawn_identified("tx", {
                    let txs = txs.clone();
                    async {
                        eprintln!("sending task...");
                        for (i, mut tx) in txs.into_iter().enumerate() {
                            eprintln!("sending 0 to {i}...");
                            tx.send(0).await.unwrap();
                        }
                        eprintln!("sending task done");
                    }
                });

                for i in 0..txs.len() {
                    eprintln!("main {i} wait stall...");
                    runtime.progress_until_stalled().await;
                    eprintln!("main {i} rx wait...");
                    let r = rx_n.next().await;
                    eprintln!("main {i} rx = {r:?}");
                    assert!(r == Some(0) || r == Some(N - 1));
                }

                eprintln!("finishing...");
                runtime.progress_until_stalled().await;
                eprintln!("finished.");
            }
        });
    }
}